Skip to main content
Log in

The evolution of CMA bands in Citrus and related genera

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Most species of Citrus and related genera display a similar karyotype with 2n = 18 and a variable number of terminal heterochromatic blocks positively stained with chromomycin A3 (CMA+ bands). Some of these blocks are 45S rDNA sites, whereas others may correspond to the main GC-rich satellite DNA found in several Citrus species. In the present work, the distribution of the 45S rDNA and the main satellite DNA isolated from C. sinensis (CsSat) were investigated by in situ hybridization in seven species of Citrus, two species of closely related genera (Fortunella obovata and Poncirus trifoliata) and four species of the subfamily Aurantioideae, which were less related to Citrus (Atalantia monophylla, Murraya paniculata, Severinia buxifolia, and Triphasia trifolia). In Citrus, Fortunella, and Poncirus, most CMA+ bands colocalized only with CsSat sites, whereas others colocalized only with rDNA sites. However, some of these species displayed a few CMA+ bands that colocalized with sites of both probes and other CMA+ bands that did not colocalized with any of the probes. On the other hand, in the four species less related to Citrus, no CsSat signal was found on chromosomes. On Southern blot, the CsSat probe hybridized with genomic DNA from Citrus, Fortunella, and Poncirus at high stringency only, while under the less stringent conditions, it also hybridized with distantly related species. Therefore, CsSat sequences are the principal component of the heterochromatic blocks of Citrus, Poncirus, and Fortunella, whereas CsSat-like sequences seem to be widespread in the subfamily Aurantioideae. These data further suggest that the variable number of terminal CMA+ bands observed on chromosomes of Citrus and related genera are probably the consequence of amplification or reduction in the number of CsSat-like sequences distributed on chromosome termini, paralleled by mutation and homogenization events, as proposed by the library hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CMA:

Chromomycin A3

DAPI:

4′,6-diamidino-2-phenylindole

FISH:

Fluorescence in situ hybridization

FITC:

Fluorescein isothiocyanate

CsSat:

Citrus sinensis satellite DNA

PCR:

Polymerase chain reaction

References

  • Beridze T, Tsirekidze N, Roytberg MA (1992) On the tertiary structure of satellite DNA. Biochimie 74:187–194

    Article  CAS  PubMed  Google Scholar 

  • Brasileiro-Vidal AC, dos Santos-Serejo JA, Soares Filho WS, Guerra M (2007) A simple chromosomal marker can reliably distinguishes Poncirus from Citrus species. Genetica 129:273–279

    Article  CAS  PubMed  Google Scholar 

  • Carvalho R, Soares Filho WS, Brasileiro-Vidal AC, Guerra M (2005) The relationship among lemons, limes and citron: a chromosomal comparison. Cytogenet Genome Res 109:276–282

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Cornélio MTMN, Figueirôa ARS, Santos KGB, Soares Filho WS, Guerra M (2003) Chromosomal relationships among cultivars of Citrus reticulata Blanco, its hybrids and related species. Plant Syst Evol 240:149–161

    Article  Google Scholar 

  • CSHL/WUGS/PEB (2000) The complete sequence of a heterochromatic island from a higher eukaryote. The Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center, and PE Biosystems Arabidopsis Sequencing Consortium. Cell 100:377–386

    Article  Google Scholar 

  • De Felice B, Wilson RR, Ciarmiello L, Scarano MT, Ferrante S (2006) Characterization of a novel satellite DNA sequence from flying dragon (Poncirus trifoliata). Genetica 127:45–53

    Article  CAS  PubMed  Google Scholar 

  • Fann JY, Kovarik A, Hemleben V, Tsirekidze NI, Beridze TG (2001) Molecular and structural evolution of Citrus satellite DNA. Theor Appl Genet 103:1068–1073

    Article  CAS  Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 2:1069–1084

    Article  Google Scholar 

  • Guerra M (1993a) High amount of heterochromatin in a tropical tree species: Genipa americana L. (Rubiaceae). Cytologia 58:427–432

    CAS  Google Scholar 

  • Guerra M (1993b) Cytogenetics of Rutaceae. V. High chromosomal variability in Citrus species revealed by CMA/DAPI staining. Heredity 71:234–241

    Article  Google Scholar 

  • Guerra M (2009) Chromosomal variability and the origin of Citrus species. In: Mahoney CL, Springer DA (eds) Genetic diversity. Nova Science, New York, pp 51–68

    Google Scholar 

  • Guerra M, Santos KGB, Barros e Silva AE, Ehrendorfer F (2000) Heterochromatin banding patterns in Rutaceae–Aurantioideae—a case of parallel chromosomal evolution. Am J Bot 87:735–747

    Article  CAS  PubMed  Google Scholar 

  • Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289

    Article  Google Scholar 

  • Hou MH, Robinson H, Gao YG, Wang AH (2004) Crystal structure of the [Mg2+-(chromomycin A3)2]-d(TTGGCCAA)2 complex reveals GGCC binding specificity of the drug dimmer chelated by a metal ion. Nucleic Acids Res 32:2214–2222

    Article  CAS  PubMed  Google Scholar 

  • Ingle J, Pearson GG, Sinclair J (1973) Species distribution and properties of nuclear satellite DNA in higher plants. Nature 242:193–197

    Article  CAS  Google Scholar 

  • Kang SK, Lee DH, An HY, Park JH, Yun SH, Moon YE, Bang JW, Hur Y, Hoe Koo DH (2008) Extensive chromosomal polymorphism revealed by ribosomal DNA and satellite DNA loci in 13 Citrus species. Mol Cells 26:319–322

    CAS  PubMed  Google Scholar 

  • Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S (2006) The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome 49:520–530

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907–919

    Article  CAS  PubMed  Google Scholar 

  • Moraes AP, Soares Filho WS, Guerra M (2007a) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121

    Article  CAS  PubMed  Google Scholar 

  • Moraes AP, Lemos RR, Brasileiro-Vidal AC, Soares Filho WS, Guerra M (2007b) Chromosomal markers distinguish hybrids and non-hybrid accessions of mandarin. Cytogenet Genome Res 119:275–181

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama T, Akihama T, Ito Y, Omura M, Fukui K (1996) Characterization of heterochromatic regions in ‘Trovita’ orange (Citrus sinensis Osbeck) chromosomes by the fluorescent staining and FISH method. Genome 39:941–945

    Article  CAS  PubMed  Google Scholar 

  • Miranda M, Ikeda F, Endo T, Moriguchi T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus and Fortunella chromosomes. Chromosome Res 5:86–92

    Article  CAS  PubMed  Google Scholar 

  • Morton CM, Grant M, Blackmore S (2003) Phylogenetic relationships of the Aurantioideae inferred from chloroplast DNA sequence data. Am J Bot 90:1463–1469

    Article  CAS  Google Scholar 

  • Pedrosa A, Schweizer D, Guerra M (2000) Cytological heterozygosity and the hybrid origin of sweet orange [Citrus sinensis (L.) Osbeck]. Theor Appl Genet 100:361–367

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26

    Article  CAS  PubMed  Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: Reuther W, Weber HJ, Batchelor LD (eds) The Citrus industry. History, world distribution, botany and varieties, vol I. University of California Press, Berkeley, pp 190–430

    Google Scholar 

  • Tek AL, Song J, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238

    Article  CAS  PubMed  Google Scholar 

  • Wanzenböck EM, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016

    Article  PubMed  Google Scholar 

  • Winterfeld G, Röser M (2007) Chromosomal localization and evolution of satellite DNAs and heterochromatin in grasses (Poaceae), especially tribe Aveneae. Plant Syst Evol 264:75–100

    Article  CAS  Google Scholar 

  • Yamamoto M, Abkenar AA, Matsumoto R, Kubo T, Tominaga S (2008) CMA staining analysis of chromosomes in Citrus relatives, Clymenia, Eremocitrus and Microcitrus. J Jpn Soc Hortic Sci 77:24–27

    Article  Google Scholar 

  • Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K (2007) Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Cell 27:163–169

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grant of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE). We thank Dr. Walter dos Santos Soares Filho, from EMBRAPA/CNPMF, who kindly send us seeds from several species, Andrea Pedrosa-Harand for critical comments, and Gabriela Cabral for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Guerra.

Additional information

Responsible Editor: Pat Heslop - Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros e Silva, A.E., Marques, A., dos Santos, K.G.B. et al. The evolution of CMA bands in Citrus and related genera. Chromosome Res 18, 503–514 (2010). https://doi.org/10.1007/s10577-010-9130-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9130-2

Keywords

Navigation