Chromosome Research

, Volume 18, Issue 4, pp 473–486 | Cite as

Robertsonian fusions, pericentromeric repeat organization and evolution: a case study within a highly polymorphic rodent species, Gerbillus nigeriae

  • Philippe Gauthier
  • Karmadine Hima
  • Gauthier Dobigny


Pericentromeric repeats have been claimed to mediate centric fusions through heterologous recombination of arrays of tandemly repeated and highly homogenized motifs. However, mammalian case studies are essentially restricted to pathologic fusions in human, or to the house mouse Roberstonian (Rb) races. We here provide an example in a wild gerbil rodent, Gerbillus nigeriae, which displays an extensive Rb polymorphism, with 2n ranging between 2n = 60 and 74. The distribution of two closely related repeats, GERB1 and GERB2 that were previously isolated by Volobouev et al. (Chromosoma 104:252–259, 1995) in this African species, were investigated in the genomes of seven individuals with various diploid numbers. Our results clearly show that GERB1 and GERB2 are organized in a non-random manner, with GERB2 and GERB1 being clearly juxtacentromeric and centromeric, respectively. Finally, cloning and sequencing revealed that, unlike GERB2, GERB1 monomers display a more homogeneous organization at both the nucleotide and structural levels. Altogether, our results point toward a pivotal role of GERB1 repeats in the mediation of Rb fusions through heterologous recombination, with some evidence of subsequent loss of repeats after the Rb fusion during the course of evolution of metacentric elements. Moreover, the repeat pattern observed in G. nigeriae closely matches the organization and sequence structure of satellite DNAs described in human acrocentrics. Consequently, G. nigeriae appears as an additional model for the study of repeat evolution and its role in centric fusions and their consequences in mammals.


chromosome evolution satellite DNA repeat evolution centric fusions centromere Muridae Gerbillinae 





fluorescent in situ hybridization


fluorescein isothiocyanate


long interspersed element one


polymerase chain reaction


primed in situ hybridization

Rb fusion

Robertsonian fusion



Ambroise Dalecky and Massamba Thiam kindly provided the gerbil samples from Mali and Senegal for cell culture purposes. Most of our survey, including field work in Niger, was funded by the IRD and the ANR (program no. ANR-05-JC05-48631 led by G. Dobigny). Work permit in the W National Park area was kindly provided by Mr Soumeïla Sahailou (coord. ECOPAS program). We would also like to thank the IFR119 “Montpellier Environnement Biodiversité” who partly funded some of the cell culture and fluorescence microscopy equipment used in this study. We are grateful to Janice Britton-Davidian for very helpful comments and stimulating discussions, as well as to Malcolm Ferguson-Smith and Herbert McGregor for their help with the English wording.

We wish to dedicate this work to our dear friend and colleague Adamou Nomao who spent 4 years working on G. nigeriae, but left us precociously.

Supplementary material

10577_2010_9128_MOESM1_ESM.pdf (190 kb)
Supplementary Figure Sequence alignment of the four GERB1-containing clones (numbers 2–5) as well as Volobouev et al.’s (1995) one (number 1). For clarity, each clone was aligned following the motifs A–H (271 bp) substructure. See text and Fig. 5 for details. (PDF 190 kb)


  1. Avner D, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Genet 2:59–67Google Scholar
  2. Bâ K, Thiam M, Dobigny G et al (2006) Hypothesis on the origin of invasion of Senegal by Gerbillus nigeriae based on chromosomal data. Mammalia 70:303–305CrossRefGoogle Scholar
  3. Banaszek A, Taylor JRE, Ochocinska D, Chetnicki W (2009) Robertsonian polymorphism in the common shrew (Sorex araneus L.) and selective advantage of heteroygotes indicated by their higher maximum metabolic rates. Heredity 102:155–162CrossRefPubMedGoogle Scholar
  4. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  5. Bandyopadhyay R, Berend SA, Page SL, Choo KHA, Shaffer LG (2001) Satellite III sequences on 14p and their relevance to Roberstonian translocation formation. Chromosome Res 9:235–242CrossRefPubMedGoogle Scholar
  6. Bayes JJ, Malik HS (2008) The evolution of centromeric DNA sequences. In: Encyclopedia of life sciences. J. Wiley J and Sons, Ltd, ChichesterGoogle Scholar
  7. Bonnet-Garnier A, Lacaze S, Beckers JF, Berland HM, Pinton A, Yerle M, Ducos A (2008) Meiotic segregation analysis in cow carrying the t(1;29) Robertsonian translocation. Cytogenet Genome Res 120:91–96CrossRefPubMedGoogle Scholar
  8. Castiglia R, Garagna S, Merico V, Oguge N, Corti M (2006) Cytogenetics if a new cytotype of African Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G- banding and distribution of (TTAGGG)n telomeric sequences. Chromosome Res 14:587–594CrossRefPubMedGoogle Scholar
  9. Chaves R, Adega R, Heslop-Harrison JS, Guedes-Pinto H, Wienberg J (2003) Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle. Chromosome Res 11:641–648CrossRefPubMedGoogle Scholar
  10. Choo KH, Vissel B, Brown R, Filby RG, Earle E (1988) Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations. Nucl Acids Res 16:1273–1284CrossRefPubMedGoogle Scholar
  11. Dobigny G, Nomao A, Gautun JC (2002) A cytotaxonomic survey of rodents from Niger: implications for systematics, biodiversity and biogeography. Mammalia 66:495–523CrossRefGoogle Scholar
  12. Dobigny G, Aniskin V, Granjon L, Cornette R, Volobouev V (2005) Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity 95:358–368CrossRefPubMedGoogle Scholar
  13. Evans EP, Breckon G, Ford CE (1963) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 3:289–294CrossRefGoogle Scholar
  14. Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite sequences DNA in the pericentromeric area. Chromosoma 103:685–692CrossRefPubMedGoogle Scholar
  15. Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA (2001) Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Nat Acad Sci USA 98:171–175CrossRefPubMedGoogle Scholar
  16. Garagna S, Zuccotti M, Capanna E, Redi CA (2002) High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet Genome Res 96:125–129CrossRefPubMedGoogle Scholar
  17. Gardner RJM, Sutherland GR et al (1996) Chromosome abnormalities and genetic counseling. Oxford Monographs on Medical Genetics n°29, Oxford University Press, New York and Oxford, p 478Google Scholar
  18. Hansen RS (2003) X inactivation-specific methylation of LINE-1 elements by DNMTB3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12:2559–2567CrossRefPubMedGoogle Scholar
  19. Hartmann N, Scherthan H (2004) Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Chromosoma 112:213–220CrossRefPubMedGoogle Scholar
  20. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl Acids Res 19:4780CrossRefPubMedGoogle Scholar
  21. Kalitsis P, Griffiths B, Choo KHA (2006) Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. Proc Nat Acad Sci USA 103:8786–8791CrossRefPubMedGoogle Scholar
  22. Koch J (1996) Primed in situ Labeling as a fast and sensitive method for the detection of specific DNA sequences in chromosomes and nuclei. Methods Comp Methods Enzymol 9:122–128CrossRefGoogle Scholar
  23. Li YC, Lee C, Hsu TH, Li SY, Lin CC (2000) Direct vizualisation of the genomic distribution and organization of two cervid centromeric satellite DNA families. Cytogenet Cell Genet 89:192–198CrossRefPubMedGoogle Scholar
  24. Lyon M (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Nat Acad Sci USA 97:6248–6249CrossRefPubMedGoogle Scholar
  25. Mao X, Nie W, Wang J et al (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving inter-family phylogenetic relationships. Chromosome Res 16:129–143CrossRefGoogle Scholar
  26. Modi B, Gallagher DS, Womack JE (1996) Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia). J Mol Evol 42:337–349CrossRefPubMedGoogle Scholar
  27. Musser GG, Carleton MD (2005) Gerbillus nigeriae. In: Wilson DE, Reeder DAM (eds) Mammal species of the World: a taxonomic and geographic reference, vol. 2. The John Hopkins Univ. Press, p 1230Google Scholar
  28. Nanda I, Schneider-Rasp S, Winking H, Schmid M (1995) Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Res 3:399–409CrossRefPubMedGoogle Scholar
  29. Nomao A (2002) Contribution à la connaissance des rongeurs du Niger. Caractéristiques biologiques et écologiques d’une population de Gerbillus nigeriae (Rodentia, Gerbillinae) dans la ferme de Kolo. PhD Thesis, Unov. Abdou Moumouni, Niamey, NigerGoogle Scholar
  30. Pialek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Biol J Linnean Soc 85:535–563CrossRefGoogle Scholar
  31. Rambau RV, Robinson TJ, Stanyon R (2003) Molecular genetics of Rhabdomys pumilio subspecies boundaries: mtDNA phylogeography and karyotypic analysis by fluorescence in situ hybridization. Mol Phylogenet Evol 28:564–573CrossRefPubMedGoogle Scholar
  32. Redi CA, Garagna S, Zuccotti M (1990) Robertsonian chromosome formation and fixation: the genomic scenario. Biol J Linnean Soc 41:235–255CrossRefGoogle Scholar
  33. Robertson WRB (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: chromosomes and variation. J Morph 27:179–331CrossRefGoogle Scholar
  34. Robinson T, Elder FFB (1993) Cytogenetics: its role in wildlife management and the genetic conservation if mammals. Biol Cons 63:47–51CrossRefGoogle Scholar
  35. Roizes G (2006) Human centromeric alphoid domains are periodically homogenized: mechanism and implications for centromere functioning. Nucl Acid Res 34:1912–1924CrossRefGoogle Scholar
  36. Ropiquet A, Gerbault-Seureau M, Deuve JL, Gilbert C, Pagacova E, Chai N, Rubes J, Hassanin A (2008) Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): the karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Res 16:1107–1118CrossRefPubMedGoogle Scholar
  37. Rudd MK, Wray GA, Willard HF (2006) The evolutionary dynamics of α-satellite. Genome Res 16:88–96CrossRefPubMedGoogle Scholar
  38. Sage RD, Atchley B, Capanna E (1993) House mice as models in systematic biology. Syst Biol 42:523–561Google Scholar
  39. Sans-Fuentes MA, Lopez-Fuster MJ, Ventura J, Diez-Noguera A, Cambrias T (2005) Effect of Robertsonian translocations on the motor activity rhythm in the house mouse. Behavior Genet 35:603–613CrossRefGoogle Scholar
  40. Scherthan H (1990) Localization of the repetitive telomeric sequence (TTAGGG)n in two muntjac species and implications for their karyotype evolution. Cytogenet Cell Genet 53:115–117CrossRefPubMedGoogle Scholar
  41. Schroder JH, Otten I-S (1985) Increase aggressiveness of male mice carrying a reciprocal translocation, T(10, 13), in the heterozygous state. Behavior Genet 15:43–51CrossRefGoogle Scholar
  42. Seabright M (1971) A rapid banding technique for human chromosome. Lancet 2:971–972CrossRefPubMedGoogle Scholar
  43. Shepelev VA, Alexandrov AA, Yurov YB, Alexandrov IA (2009) The evolutionary origin of man can be traced in the layers of defunct ancestral satellites flanking the active centromeres of human chromosomes. PLoS Genet 5:e1000641CrossRefPubMedGoogle Scholar
  44. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 7:304–306CrossRefGoogle Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  46. Thiam M, Bâ K, Duplantier JM (2008) Impact of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis. African Zool 43:135–143CrossRefGoogle Scholar
  47. Tranier M (1975) Originalité du caryotype de Gerbillus nigeriae (Rongeurs, Gerbillidés). Mammalia 39:703–704CrossRefPubMedGoogle Scholar
  48. Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multi-directional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107CrossRefPubMedGoogle Scholar
  49. Ventura M, Boniotto M, Cardone MF et al (2001) Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur. Gene 275:305–310CrossRefPubMedGoogle Scholar
  50. Veyrunes F, Dobigny G, Yang F et al (2006) Phylogenomics of the genus Mus (Rodentia, Muridae): extensive genome repatterning is not restricted to the house mouse. Proc Roy Soc London B 273:2925–2934CrossRefGoogle Scholar
  51. Viegas-Péquignot E, Benazzou T, Dutrillaux B, Petter F (1982) Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet Cell Genet 34:158–167CrossRefPubMedGoogle Scholar
  52. Viegas-Péquignot E, Benazzou T, Prod’Homme M, Dutrillaux B, Petter F (1984) Characterization of a very complex constitutive heterochromatin in two Gerbillus species (Rodentia). Chromosoma 89:42–47CrossRefPubMedGoogle Scholar
  53. Volobouev V, Viegas-Péquignot E, Petter F, Gautun JC, Sicard B, Dutrillaux B (1988) Complex chromosomal polymorphism in Gerbillus nigeriae (Rodentia, Gerbillidae). J Mammal 69:131–134CrossRefGoogle Scholar
  54. Volobouev V, Vogt N, Viegas-Péquignot E, Malfoy B, Dutrillaux B (1995) Characterization and chromosomal location of two repeated DNAs in three Gerbillus species. Chromosoma 104:252–259CrossRefPubMedGoogle Scholar
  55. Volobouev V, Aniskin VM, Lecompte E, Ducroz JF (2002) Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogenet Genome Res 96:261–275CrossRefPubMedGoogle Scholar
  56. Waters PD, Dobigny G, Pardini AT, Robinson TJ (2004) LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 113:137–144CrossRefPubMedGoogle Scholar
  57. Waters PD, Ruiz-Herrera A, Dobigny G, Garcia-Caldès M, Robinson TJ (2007) Sex chromosomes of basal placental mammals. Chromosoma 116:511–518CrossRefPubMedGoogle Scholar
  58. Wichman HA, Payne CT, Ryder OA, Hamilton MJ, Maltbie M, Baker RJ (1991) Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Heredity 82:369–377Google Scholar
  59. Wojcik JM, Borodin PM, Fedyk S et al (2003) The list of the chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia 67:169–178CrossRefGoogle Scholar
  60. Yang F, O’Brien PCM, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA (1997) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Philippe Gauthier
    • 1
  • Karmadine Hima
    • 1
    • 2
  • Gauthier Dobigny
    • 1
    • 2
  1. 1.Institut de Recherche pour le Développement, Centre de Biologie et de Gestion des Populations (CBGP; UMR022 IRD-INRA-Montpellier SupAgro)Campus International de BaillarguetMontferrier-sur-LezFrance
  2. 2.IRDCentre Régional AgrhymetNiameyNiger

Personalised recommendations