Advertisement

Chromosome Research

, Volume 18, Issue 3, pp 307–324 | Cite as

The winged-helix transcription factor JUMU regulates development, nucleolus morphology and function, and chromatin organization of Drosophila melanogaster

  • Annemarie Hofmann
  • Madeleine Brünner
  • Alexander Schwendemann
  • Martin Strödicke
  • Sascha Karberg
  • Ansgar Klebes
  • Harald Saumweber
  • Günter Korge
Article

Abstract

The PEV-modifying winged-helix/forkhead domain transcription factor JUMU of Drosophila is an essential protein of pleiotropic function. The correct gene dose of jumu is required for nucleolar integrity and correct nucleolus function. Overexpression of jumu results in bloating of euchromatic chromosome arms, displacement of the JUMU protein from the chromocenter and the nucleolus, fragile weak points, and disrupted chromocenter of polytene chromosomes. Overexpression of the acidic C terminus of JUMU alone causes nucleolus disorganization. In addition, euchromatic genes are overexpressed and HP1, which normally accumulates in the pericentric heterochromatin and spreads into euchromatic chromosome arms, although H3-K9 di-methylation remains restricted to the pericentric heterochromatin. The human winged-helix nude gene shows similarities to jumu and its overexpression in Drosophila causes bristle mutations.

Keywords

Nucleolus disorganization heterochromatin destruction whn-transcription factor HP1 overexpression 

Abbreviations

Domina (Dom)

Synonym of the jumeaux gene

Gal4

Transcription factor of yeast

HP1

Heterochromatin protein 1

hsp

Heatshock promoter

JUMU

Protein encoded by jumeaux (jumu)

PEV

Position–effect variegation

E(var)

Enhancer of position–effect variegation

Su(var)

Suppressor of position–effect variegation

UAS

upstream activating sequence

whn/fkh

Winged-helix nude/forkhead DNA binding domain

Notes

Acknowledgments

We thank E.K.F. Bautz, T. Boehm, S.C.R. Elgin, R.J. Hill, J. Pradel, and G. Reuter for providing us with the antibodies listed in the Supplementary Table 1. We thank U.A. Nuber, Lund, for helpful advice on DNA interaction screening. This work was financially supported by pilot project grants from the Freie Universität Berlin to G. K.

Supplementary material

10577_2010_9118_Fig10_ESM.jpg (62 kb)
Supplementary Figure 1

Nucleolus disorganization in the jumu-overexpressed line Sgs4:Gal4;UAS:jumu. red Cyc3-labeled Aj1 antibody (nucleolus). green Hoechst-stained DNA. (JPEG 61 kb)

10577_2010_9118_MOESM1_ESM.tif (24.9 mb)
High Resolution (TIFF 25516 kb)
10577_2010_9118_Fig11_ESM.jpg (48 kb)
Supplementary Figure 2

Jumu overexpression causes transcriptional activation. Microarray analysis of third instar salivary glands that overexpress a Jumu transgene (Schwendemann et al. 2008) revealed 749 transcripts with an enrichment of at least twofold compared to control salivary glands. In contrast, only 30 transcripts are less abundant in the jumu overexpression glands. (JPEG 48 kb)

10577_2010_9118_MOESM2_ESM.tif (24.9 mb)
High Resolution (TIFF 25516 kb)
10577_2010_9118_Fig12_ESM.jpg (106 kb)
Supplementary Figure 3

Overexpression of Bj1 in the jumu-overexpressing Sgs:Gal4;UAS:jumu line. above Whole mount salivary glands, phosphatase anti-Bj1 antibody staining. a jumu-overexpressing line Sgs:Gal4;UAS:jumu. b Control. Both glands treated and mounted together. Below squash preparations of polytene chromosomes. green DNA Hoechst staining. red Cyc3 anti-Bj1 antibody staining. FB fat body. (JPEG 106 kb)

10577_2010_9118_MOESM3_ESM.tif (14 mb)
High Resolution (TIFF 14371 kb)
10577_2010_9118_Fig13_ESM.jpg (48 kb)
Supplementary Figure 4

Macrochaetae of hsp:Gal4;UAS:hwhn flies are long, pale, deformed, and fragile. a hsp:Gal4;UAS:hwhn male. b wild-type male, wings cut. Arrows cuticular bristles. (JPEG 48 kb)

10577_2010_9118_MOESM4_ESM.tif (2.7 mb)
High Resolution (TIFF 2767 kb)
10577_2010_9118_MOESM5_ESM.doc (44 kb)
Supplementary Table 1 Tested antibodies with respect to gain-of-function effects of jumu on the chromatin structure. (DOC 44.5 kb)
10577_2010_9118_MOESM6_ESM.xls (80 kb)
Supplementary Table 2 List of up- and down-regulated genes after jumu overexpression. Genes are listed that showed at least a twofold difference in expression ratios comparing jumu overexpressing and control salivary glands (median ratios of two independent microarray experiments; further information is available upon request). The columns provide the gene name or symbol (Name), Flybase identification number (ID), and the median log2-transformed expression ratio (ratio (log2)). Genes with transcripts that were enriched in jumu overexpressing glands are highlighted in yellow and those with enrichment in control glands in blue. jumu, hip, Su(var)2-5, and Bj1 red. (XLS 79.5 kb)

References

  1. Andersen JS, Lyon CE, Fox AH, Leung AKL, Lam YW, Steeen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Current Biol 12:1–11CrossRefGoogle Scholar
  2. Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev 3:1288–1300CrossRefPubMedGoogle Scholar
  3. Blanchard D, Hutter H, Fleenor J, Fire A (2006) A differential cytolocalization assay for analysis of macromolecular assemblies in the eukaryotic cytoplasm. Mol Cell Proteomics 5:2175–2184CrossRefPubMedGoogle Scholar
  4. Brand AH, Perrimon N (1993) Targeted gene expression as a mean of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  5. Cheah PY, Chia W, Yang X (2000) Jumeaux, a novel Drosophila winged-helix family protein, is required for generating asymmetric neuronal fates. Development 127:3325–3335PubMedGoogle Scholar
  6. Chris B, Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. METHODS: A Companion to Methods in Enzymology 14:367–379CrossRefGoogle Scholar
  7. Cléard F, Delattre M, Spierer P (1997) SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J 16:5280–5288CrossRefPubMedGoogle Scholar
  8. Ebert A, Schotta G, Lein S, Kubicek S, Krauss V, Jenuwein T, Reuter G (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18:2973–2983CrossRefPubMedGoogle Scholar
  9. Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14:377–392CrossRefPubMedGoogle Scholar
  10. Eissenberg JC, Hartnett T (1993) A heat-shock-activated cDNA rescues the recessive lethality of mutations in the heterochromatin-associated protein HP1 of Drosophila melanogaster. Mol Gen Genet 240:333–338PubMedGoogle Scholar
  11. Eissenberg JC, Elgin SCR (2000) The HP1 protein family: getting a grip on chromatin. Current Opinion Genet Dev 10:204–210CrossRefGoogle Scholar
  12. Fischle W (2008) Talk is cheap-cross-talk in establishment, maintenance, and readout of chromatin modifications. Genes Dev 22:3375–3382CrossRefPubMedGoogle Scholar
  13. Frasch M (1991) The maternally expressed Drosophila gene encoding the chromatin-binding protein BJ1 is a homolog of the vertebrate gene regulator of chromatin condensation, RCC1. EMBO J 10:1225–1236PubMedGoogle Scholar
  14. Frasch M, Glover DM, Saumweber H (1986) Nuclear antigens follow different pathways into daughter nuclei during mitosis in early Drosophila embryos. J Cell Sci 82:155–172PubMedGoogle Scholar
  15. Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736CrossRefPubMedGoogle Scholar
  16. Greil F, de Wit E, Bussemaker HJ, van Steensel B (2007) HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila. EMBO J 26:741–751CrossRefPubMedGoogle Scholar
  17. Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15:1334–1348CrossRefPubMedGoogle Scholar
  18. Henikoff S (1996) Dosage-dependent modification of position-effect vatiegation in Drosophila. BioEssays 18:401–409CrossRefPubMedGoogle Scholar
  19. Hofmann A, Keinhorst A, Krumm A, Korge G (1987) Regulatory sequences of the Sgs-4 gene of Drosophila melanogaster analysed by P element-mediated transformation. Chromosoma 96:8–17CrossRefPubMedGoogle Scholar
  20. Hofmann A, Brünner M, Korge G (2009) The winged-helix transcription factor JUMU is a haplo suppressor/triplo enhancer of PEV in various tissues but exhibits reverse PEV effects in the brain of Drosophila melanogaster. Chromosome Res 17:347–358CrossRefPubMedGoogle Scholar
  21. Hwang K-K, Eissenberg JC, Worman HJ (2001) Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc Natl Acad Sci U S A 98:11423–11427CrossRefPubMedGoogle Scholar
  22. Jaquet Y, Delattre M, Spierer A, Spierer P (2002) Functional dissection of the Drosophila modifier of variegation Su(var)3-7. Development 129:3975–3982PubMedGoogle Scholar
  23. James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Europ J Cell Biol 50:170–180PubMedGoogle Scholar
  24. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRefPubMedGoogle Scholar
  25. Joppich C, Scholz S, Korge G, Schwendemann A (2009) Umbrea, a chromo shadow domain protein in Drosophila melanogaster heterochromatin, interacts with Hip, HP1 and HOAP. Chromosome Res 17:19–36CrossRefPubMedGoogle Scholar
  26. Karpen GH, Schaefer JE, Laird CD (1988) A drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Development 2:1745–1763CrossRefPubMedGoogle Scholar
  27. Kaufmann E, Knöchel W (1996) Five years on the wings of fork head. Mech Dev 57:3–20CrossRefPubMedGoogle Scholar
  28. Lehmann M, Korge G (1996) The fork head product directly specifies the tissue-specific hormone responsiveness of the Drosophila Sgs4 gene. EMBO J 15:4825–4834PubMedGoogle Scholar
  29. Lindsley DT, Zimm GG (1992) The genome of Drosophila melanogaster. Academic, San DiegoGoogle Scholar
  30. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719CrossRefPubMedGoogle Scholar
  31. Liu Y, Lehmann M (2008) A genomic response to the yeast transcription factor GAL4 in Drosophila. Fly 2(2):92–98PubMedGoogle Scholar
  32. Nehls N, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107CrossRefPubMedGoogle Scholar
  33. Nishimoto T, Eilen E, Basilico C (1978) Premature of chromosome condensation in a ts DNA-mutant of BHK cells. Cell 15:475–483CrossRefPubMedGoogle Scholar
  34. Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. In: Goldstein LSB, Fyrberg EA (eds) Methods in cell biology, vol 44. Academic, Oxford, pp 445–487Google Scholar
  35. Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35CrossRefPubMedGoogle Scholar
  36. Perrin L, Demakova O, Fanti L, Kallenbach S, Saingery S, Mal’ceva NI, Pimpinelli S, Zhimulev I, Pradel J (1998) Dynamics of the sub-nuclear distribution of Modulo and the regulation of position-effect variegation by nucleolus in Drosophila. J Cell Science 111:2753–2761PubMedGoogle Scholar
  37. Perrin L, Romby P, Laurenti P, Bérenger H, Kallenbach S, Bourbon HM, Pradel J (1999) The Drosophila modifier of variegation modulo gene products binds specific RNA sequences at the nucleolus and interacts with DNA and chromatin in a phosphorylation-dependent manner. J Biol Chemistry 274:6315–6323CrossRefGoogle Scholar
  38. Reuter G, Spierer P (1992) Position effect variegation and chromatin proteins. BioEssays 14:605–612CrossRefPubMedGoogle Scholar
  39. Reuter G, Dorn R, Wustmann G, Friede B, Rauh G (1986) Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. Molec Gen Genet 202(3):481–487CrossRefGoogle Scholar
  40. Saeboe-Larssen S, Lyamouri M, Merriam J, Oksvold MP, Lambertsson A (1998) Ribosomal protein insufficiency and the Minute Syndrome in Drosophila: a dose–response relationship. Genetics 148:1215–1224PubMedGoogle Scholar
  41. Sambrook J, Fritsch EF, Maniatis T (1998) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  42. Schlake T, Schorpp M, Nehls M, Boehm T (1997) The nude gene encodes a sequence-specific DNA binding protein with homologs in organisms that lack an anticipatory immune system. Proc Natl Acad Sci U S A 94:3842–3847CrossRefPubMedGoogle Scholar
  43. Schlake T, Schorpp M, Maul-Pavicic A, Malashenko AM, Boehm T (2000) Forkhead/Winged-Helix transcription factor Whn regulates hair keratine gene expression: molecular analysis of the nude skin phenotype. Dev Dynamics 217:368–376CrossRefGoogle Scholar
  44. Schorpp M, Leicht M, Nold E, Hammerschmidt M, Haas-Assenbaum A, Wiest W, Boehm T (2002) A zebrafish orthologue (whnb) of the mouse nude gene is expressed in the epithelial compartment of the embryonic thymic rudiment. Mech Dev 118:179–185CrossRefPubMedGoogle Scholar
  45. Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131CrossRefPubMedGoogle Scholar
  46. Schüddekopf K, Schorpp M, Boehm T (1996) The whn transcription factor encoded by the nude locus contains an evolutionarily conserved and functionally indispensable activation domain. Proc Natl Acad Sci U S A 93:9661–9664CrossRefPubMedGoogle Scholar
  47. Schwendemann A, Matkovic T, Linke C, Klebes A, Hofmann A, Korge G (2008) Hip, an HP1-interacting protein, is a haplo- and triplo-suppressor of position effect variegation. Proc Natl Acad Sci U S A 105:2004–2009CrossRefGoogle Scholar
  48. Shi W-Y, Skeath JB (2004) The Drosophila RCC1 homolog, Bj1, regulates nucleocytoplasmic transport and neural differentiation during Drosophila development. Dev Biol 270:106–121CrossRefPubMedGoogle Scholar
  49. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269CrossRefPubMedGoogle Scholar
  50. Spierer A, Seum C, Delattre M, Spierer P (2005) Loss of the modifiers of variegation Su(var)3-7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Science 118:5047–5057CrossRefPubMedGoogle Scholar
  51. Spierer A, Begeot F, Spierer P, Delattre M (2008) SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PloS Genetics 4(5):e1000066. doi: 10.1371/journal.pgen.1000066 CrossRefPubMedGoogle Scholar
  52. Stroedicke M, Karberg S, Korge G (2000) Domina (Dom), a new Drosophila member of the FKH/WH gene family, affects morphogenesis and is a suppressor of position-effect variegation. Mech Dev 96:67–78CrossRefGoogle Scholar
  53. Sugimura I, Adachi-Yamada T, Nishi Y, Nishida Y (2000) A Drosophila winged-helix nude (WHN)-like transcription factor with essential functions throughout development. Develop Growth Differ 42:237–248CrossRefGoogle Scholar
  54. Takiya S, Gazi M, Mach V (2003) The DNA binding of insect Fork head factors is strongly influenced by the negative cooperation of neighbouring bases. Insect Biochem Mol Biol 33:1145–1154CrossRefPubMedGoogle Scholar
  55. Wilson C, Pearson PK, Bellen HJ et al (1989) P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev 3:1301–1313CrossRefPubMedGoogle Scholar
  56. Wustmann G, Szidonya J, Taubert H, Reuter G (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet 217:520–527CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Annemarie Hofmann
    • 1
  • Madeleine Brünner
    • 1
  • Alexander Schwendemann
    • 1
  • Martin Strödicke
    • 2
  • Sascha Karberg
    • 1
  • Ansgar Klebes
    • 1
    • 3
  • Harald Saumweber
    • 3
  • Günter Korge
    • 1
  1. 1.Institut für Biologie-GenetikFreie Universität BerlinBerlinGermany
  2. 2.Max-Delbrück-Centrum für Molekulare MedizinBerlinGermany
  3. 3.Fakultät für Mathematik und Naturwissenschaften I, Institut für BiologieHumboldt Universität BerlinBerlinGermany

Personalised recommendations