Advertisement

Chromosome Research

, 17:811 | Cite as

Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages

  • Claus Kemkemer
  • Matthias Kohn
  • Hildegard Kehrer-Sawatzki
  • Reinald H. Fundele
  • Horst Hameister
Article

Abstract

Previous studies have revealed an enrichment of reproduction- and brain-related genes on the human X chromosome. In the present study, we investigated the evolutionary history that underlies this functional specialization. To do so, we analyzed the orthologous building blocks of the mammalian X chromosome in the chicken genome. We used Affymetrix chicken genome microarrays to determine tissue-selective gene expression in several tissues of the chicken, including testis and brain. Subsequently, chromosomal distribution of genes with tissue-selective expression was determined. These analyzes provided several new findings. Firstly, they showed that chicken chromosomes orthologous to the mammalian X chromosome exhibited an increased concentration of genes expressed selectively in brain. More specifically, the highest concentration of brain-selectively expressed genes was found on chicken chromosome GGA12, which shows orthology to the X chromosomal regions with the highest enrichment of non-syndromic X-linked mental retardation (MRX) genes. Secondly, and in contrast to the first finding, no enrichment of testis-selective genes could be detected on these chicken chromosomes. These findings indicate that the accumulation of brain-related genes on the prospective mammalian X chromosome antedates the divergence of sauropsid and synapsid lineages 315 million years ago, whereas the accumulation of testis-related genes on the mammalian X chromosome is more recent and due to adaptational changes.

Keywords

Chromosome evolution Vertebrate sex chromosomes Gene expression Gene enrichment 

Abbreviations

My

million years

Mya

million years ago

XAR

X added region

XCR

X conserved region

Notes

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (Ha 1082/16-4) and by Vetenskapsrådet (RF).

Supplementary material

10577_2009_9072_MOESM1_ESM.doc (32 kb)
Supplementary Table S1 Transcripts selected for the control of gene expression by semi-quantitative PCR. (DOC 32 kb)
10577_2009_9072_MOESM2_ESM.doc (34 kb)
Supplementary Table S2 Primer pairs for the amplification of the five transcripts. (DOC 34 kb)
10577_2009_9072_MOESM3_ESM.doc (54 kb)
Supplementary Table S3 Distribution of brain-selective genes on GGA chromosome 4 regions (DOC 54 kb)
10577_2009_9072_MOESM4_ESM.doc (255 kb)
Supplementary Figure S1 Liver specific expression. (DOC 255 kb)
10577_2009_9072_MOESM5_ESM.doc (284 kb)
Supplementary Figure S2 Heart specific expression (DOC 284 kb)
10577_2009_9072_MOESM6_ESM.doc (98 kb)
Supplementary Figure S3 Lobe specific expression. (DOC 97 kb)
10577_2009_9072_MOESM7_ESM.doc (299 kb)
Supplementary Figure S4 Testis specific expression. (DOC 299 kb)
10577_2009_9072_MOESM8_ESM.doc (104 kb)
Supplementary Figure S5 Comparison heart/lobe: The upper figure shows a MA-Plot and the lower figure a Volcano-Plot. Blue and the violet data points show higher expression in the lobe and the red and green data points show a higher expression in the heart. The two colour transition indicates the transition at a threshold of FC 1. (DOC 104 kb)
10577_2009_9072_MOESM9_ESM.doc (118 kb)
Supplementary Figure S6 Comparison heart/testis: The upper figure shows a MA-Plot and the lower figure a Volcano-Plot. Blue and the violet data points show higher expression in the testis and the red and green data points show a higher expression in the heart. The two colour transition indicates the transition at a threshold of FC 1. (DOC 118 kb)
10577_2009_9072_MOESM10_ESM.doc (106 kb)
Supplementary Figure S7 Comparison liver/heart: The upper figure shows a MA-Plot and the lower figure a Volcano-Plot. Blue and the violet data points show higher expression in the heart and the red and green data points show a higher expression in the liver. The two colour transition indicates the transition at a threshold of FC 1. (DOC 106 kb)
10577_2009_9072_MOESM11_ESM.doc (109 kb)
Supplementary Figure S8 Comparison liver/lobe: The upper figure shows a MA-Plot and the lower figure a Volcano-Plot. Blue and the violet data points show higher expression in the lobe and the red and green data points show a higher expression in the liver. The two colour transition indicates the transition at a threshold of FC 1. (DOC 109 kb)
10577_2009_9072_MOESM12_ESM.doc (116 kb)
Supplementary Figure S9 Comparison liver/testis: The upper figure shows a MA-Plot and the lower figure a Volcano-Plot. Blue and the violet data points show higher expression in the testis and the red and green data points show a higher expression in the liver. The two colour transition indicates the transition at a threshold of FC 1. (DOC 116 kb)
10577_2009_9072_MOESM13_ESM.doc (118 kb)
Supplementary Figure S10 Comparison lobe/testis: The upper figure shows a MA-Plot and the lower figure a Volcano-Plot. Blue and the violet data points show higher expression in the testis and the red and green data points show a higher expression in the lobe. The two colour transition indicates the transition at a threshold of FC 1. (DOC 118 kb)

References

  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 36:289–300Google Scholar
  2. Bininda-Emonds OR, Cardillo M, Jones KE et al (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRefGoogle Scholar
  3. Chelly J, Mandel JL (2001) Monogenic causes of X-linked mental retardation. Nat Rev Genet 2:669–680PubMedCrossRefGoogle Scholar
  4. Consortium ICGS (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716CrossRefGoogle Scholar
  5. Delbridge ML, Patel HR, Waters PD, McMillan DA, Graves JA (2009) Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28. Genome Res 19(8):1350–1360PubMedCrossRefGoogle Scholar
  6. Ellegren H (2008) Sex chromosomes: platypus genome suggests a recent origin for the human X. Curr Biol 18:R557–R559PubMedCrossRefGoogle Scholar
  7. Ellegren H, Fridolfsson AK (1997) Male-driven evolution of DNA sequences in birds. Nat Genet 17:182–184PubMedCrossRefGoogle Scholar
  8. Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303:537–540PubMedCrossRefGoogle Scholar
  9. Foster JW, Graves JA (1994) An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci U S A 91:1927–1931PubMedCrossRefGoogle Scholar
  10. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417PubMedCrossRefGoogle Scholar
  11. Glas R, Marshall Graves JA, Toder R, Ferguson-Smith M, O’Brien PC (1999) Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X. Mamm Genome 10:1115–1116PubMedCrossRefGoogle Scholar
  12. Graves JA (1995) The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philos Trans R Soc Lond B Biol Sci 350:305–311 discussion 311–302PubMedCrossRefGoogle Scholar
  13. Graves JA, Gecz J, Hameister H (2002) Evolution of the human X—a smart and sexy chromosome that controls speciation and development. Cytogenet Genome Res 99:141–145PubMedCrossRefGoogle Scholar
  14. Grutzner F, Rens W, Tsend-Ayush E et al (2004) In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432:913–917PubMedCrossRefGoogle Scholar
  15. Hsiao LL, Dangond F, Yoshida T et al (2001) A compendium of gene expression in normal human tissues. Physiol Genomics 7:97–104PubMedGoogle Scholar
  16. Hurst LD, Randerson JP (1999) An eXceptional chromosome. Trends Genet 15:383–385PubMedCrossRefGoogle Scholar
  17. Kaiser VB, Ellegren H (2006) Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution 60:1945–1951PubMedGoogle Scholar
  18. Khaitovich P, Muetzel B, She X et al (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473PubMedCrossRefGoogle Scholar
  19. Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JA, Hameister H (2004) Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet 20:598–603PubMedCrossRefGoogle Scholar
  20. Kohn M, Hogel J, Vogel W et al (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22:203–210PubMedCrossRefGoogle Scholar
  21. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967PubMedCrossRefGoogle Scholar
  22. LaVail JH, Cowan WM (1971) The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res 28:391–419Google Scholar
  23. Lehrke RG (1974) X-linked mental retardation and verbal disability. Birth Defects Orig Artic Ser 10:1–100PubMedGoogle Scholar
  24. Lubs H, Chiurazzi P, Arena J, Schwartz C, Tranebjaerg L, Neri G (1999) XLMR genes: update 1998. Am J Med Genet 83:237–247PubMedCrossRefGoogle Scholar
  25. Mateos-Langerak J, Goetze S, Leonhardt H, Cremer T, van Driel R, Lanctot C (2007) Nuclear architecture: is it important for genome function and can we prove it? J Cell Biochem 102:1067–1075PubMedCrossRefGoogle Scholar
  26. Nanda I, Zend-Ajusch E, Shan Z et al (2000) Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination. Cytogenet Cell Genet 89:67–78PubMedCrossRefGoogle Scholar
  27. Nielsen R, Bustamante C, Clark AG et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170PubMedCrossRefGoogle Scholar
  28. Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6:46–57PubMedCrossRefGoogle Scholar
  29. Ropers HH, Hoeltzenbein M, Kalscheuer V et al (2003) Nonsyndromic X-linked mental retardation: where are the missing mutations? Trends Genet 19:316–320PubMedCrossRefGoogle Scholar
  30. Saifi GM, Chandra HS (1999) An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc Biol Sci 266:203–209PubMedCrossRefGoogle Scholar
  31. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354PubMedCrossRefGoogle Scholar
  32. Storchova R, Divina P (2006) Nonrandom representation of sex-biased genes on chicken Z chromosome. J Mol Evol 63:676–681PubMedCrossRefGoogle Scholar
  33. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445PubMedCrossRefGoogle Scholar
  34. Vallender EJ, Lahn BT (2004) How mammalian sex chromosomes acquired their peculiar gene content. Bioessays 26:159–169PubMedCrossRefGoogle Scholar
  35. Veyrunes F, Waters PD, Miethke P et al (2008) Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965–973PubMedCrossRefGoogle Scholar
  36. Voolstra C, Tautz D, Farbrother P, Eichinger L, Harr B (2007) Contrasting evolution of expression differences in the testis between species and subspecies of the house mouse. Genome Res 17:42–49PubMedCrossRefGoogle Scholar
  37. Wallis MC, Waters PD, Delbridge ML et al (2007) Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res 15:949–959PubMedCrossRefGoogle Scholar
  38. Waters PD, Duffy B, Frost CJ, Delbridge ML, Graves JA (2001) The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80–130 million years ago. Cytogenet Cell Genet 92:74–79PubMedCrossRefGoogle Scholar
  39. Wilcox SA, Watson JM, Spencer JA, Graves JA (1996) Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement. Genomics 35:66–70PubMedCrossRefGoogle Scholar
  40. Wurtele H, Chartrand P (2006) Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res 14:477–495PubMedCrossRefGoogle Scholar
  41. Wyckoff GJ, Wang W, Wu CI (2000) Rapid evolution of male reproductive genes in the descent of man. Nature 403:304–309PubMedCrossRefGoogle Scholar
  42. Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H (2001) A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 17:697–701PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Claus Kemkemer
    • 1
    • 4
  • Matthias Kohn
    • 1
  • Hildegard Kehrer-Sawatzki
    • 1
  • Reinald H. Fundele
    • 2
  • Horst Hameister
    • 1
    • 3
  1. 1.Institute of Human GeneticsUniversity of UlmUlmGermany
  2. 2.Sub-department of Animal Development and Genetics, Evolutionary Biology CenterUppsala UniversityUppsalaSweden
  3. 3.GenetikumNeu-UlmGermany
  4. 4.Section of Evolutionary BiologyLMU BioCenterPlanegg-MartinsriedGermany

Personalised recommendations