Chromosome Research

, 16:575 | Cite as

Chromosome pairing in allotetraploid hybrids of Festuca pratensis × Lolium perenne revealed by genomic in situ hybridization (GISH)

  • Zbigniew Zwierzykowski
  • Elżbieta Zwierzykowska
  • Magdalena Taciak
  • Neil Jones
  • Arkadiusz Kosmala
  • Paweł Krajewski


Genomic in situ hybridization (GISH) was used to make a detailed study of chromosome pairing at metaphase I (MI) of meiosis in six F1 hybrid plants of the allotetraploid Festuca pratensis × Lolium perenne (2n = 4x = 28; genomic constitution FpFpLpLp). The mean chromosome configurations for all hybrids analysed were 1.13 univalents + 11.51 bivalents + 0.32 trivalents + 0.72 quadrivalents, and the mean chiasma frequency was 21.96 per cell. GISH showed that pairing was predominantly intragenomic, with mean numbers of L. perenne (Lp/Lp) and F. pratensis (Fp/Fp) bivalents being virtually equal at 5.41 and 5.48 per cell, respectively. Intergenomic pairing between Lolium and Festuca chromosomes was observed in 33.3% of Lp/Fp bivalents (0.62 per cell), in 79.7% of trivalents – Lp/Lp/Fp and Lp/Fp/Fp (0.25 per cell), and in 98.4% of quadrivalents – Lp/Lp/Fp/Fp and Lp/Lp/Lp/Fp (0.71 per cell). About 4.0% of the total chromosome complement analysed remained as univalents, an average 0.68 Lp and 0.45 Fp univalents per cell. It is evident that in these hybrids there is opportunity for recombination to take place between the two component genomes, albeit at a low level, and this is discussed in the context of compromising the stability of Festulolium hybrid cultivars and accounting for the drift in the balance of the genomes over generations. We speculate that genotypic differences between hybrids could permit selection for pairing control, and that preferences for homologous versus homoeologous centromeres in their spindle attachments and movement to the poles at anaphase I could form the basis of a mechanism underlying genome drift.

Key words

allopolyploids chromosome pairing Festuca pratensis × Lolium perenne hybrids genomic in situ hybridization (GISH) 


  1. Alm V, Fang C, Busso CS et al. (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108: 25–40.PubMedCrossRefGoogle Scholar
  2. Canter PH, Pašakinskienė I, Jones RN, Humphreys MW (1999) Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv Prior (2n = 4x = 28). Theor Appl Genet 98: 809–814.CrossRefGoogle Scholar
  3. Cao M, Sleper DA (2001) Use of genome-specific repetitive DNA sequences to monitor chromatin introgression from Festuca mairei into Lolium perenne. Theor Appl Genet 103: 248–253.CrossRefGoogle Scholar
  4. Cao M, Sleper DA, Dong F, Jang J (2000) Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei. Genome 43: 398–403.PubMedCrossRefGoogle Scholar
  5. Casler MD, Pitts PG, Rose-Fricker C, Bilkey PC, Wipff JK (2001) Registration of ‘Spring Green’ Festulolium. Crop Sci 41: 1365–1366.Google Scholar
  6. Connolly V, Wright-Turner R (1984) Induction of cytoplasmic male-sterility into ryegrass (Lolium perenne). Theor Appl Genet 68: 449–453.CrossRefGoogle Scholar
  7. Doohan FM, Parry DW, Jenkinson P, Nicholson P (1998) The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol 47: 197–205.CrossRefGoogle Scholar
  8. Evans GM, Davies EW (1983) Fertility and stability of induced polyploids. In: Kew Chromosome Conference II, London: George Allen and Unwin, pp. 139–146.Google Scholar
  9. Ghesquière M, Zwierzykowski Z, Poisson C, Jadas-Hécart J (1993) Amphitetraploid Festulolium (Lolium multiflorum × Festuca arundinacea var. glaucescens): chromosome stability and female fertility over intercrossing generations. In: Proceedings of the XVIIth International Grassland Congress, Palmerston North, New Zealand, February 1993, pp. 451–453.Google Scholar
  10. Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110: 579–787.PubMedCrossRefGoogle Scholar
  11. Humphreys MW (1989) The controlled introgression of Festuca arundinacea genes into Lolium multiflorum. Euphytica 42: 105–116.CrossRefGoogle Scholar
  12. Humphreys MW, Pašakinskienė I (1996) Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77: 530–534.CrossRefGoogle Scholar
  13. Humphreys MW, Thomas HM, Morgan WG et al. (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridisation. Heredity 75: 171–174.CrossRefGoogle Scholar
  14. Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skot L (2006) A changing climate for grassland research. New Phytol 169: 9–26.PubMedCrossRefGoogle Scholar
  15. Jauhar PP (1975) Chromosome relationships between Lolium and Festuca (Gramineae). Chromosoma 52: 103–121.CrossRefGoogle Scholar
  16. Jauhar PP (1993) Cytogenetics of the Festuca-Lolium complex. In: Frankel R, Grossman M, Linskens HF, Maliga P, Riley R, eds. Monographs on Theoretical and Applied Genetics, vol 18. Berlin: Springer, 255p.Google Scholar
  17. Jones N, Pašakinskienė I (2005) Genome conflict in the gramineae. New Phytol 165: 391–410.PubMedCrossRefGoogle Scholar
  18. King IP, Morgan WG, Armstead IP et al. (1998) Introgression mapping in the grasses. I. Introgression of Festuca pratensis chromosomes and chromosome segments into Lolium perenne. Heredity 81: 462–467.CrossRefGoogle Scholar
  19. King IP, Morgan WG, Harper JA, Thomas HM (1999) Introgression mapping in the grasses. II. Meiotic analysis of the Lolium perenne/Festuca pratensis triploid hybrids. Heredity 82: 107–112.CrossRefGoogle Scholar
  20. King J, Armstead IP, Donnison IS et al. (2002a) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161: 315–324.PubMedGoogle Scholar
  21. King J, Roberts LA, Kearsey M et al. (2002b) A demonstration of the 1:1 correspondence between chiasma frequency and recombination. Genetics 161: 307–314.PubMedGoogle Scholar
  22. Kleijer G (1984) Cytogenetic studies of crosses between Lolium multiflorum Lam. and Festuca arundinacea Schreb. I. The parents and their F1 hybrids. Z Pflanzenzüchtg 93: 1–22.Google Scholar
  23. Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J (2006) Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113: 731–742.PubMedCrossRefGoogle Scholar
  24. Kopyto R, Crane CF, Sleper DA (1989) Effect of temperature on meiosis and fertility in F. mairei × F. arundinacea var. glaucescens. Genome 32: 708–718.Google Scholar
  25. Kosmala A, Zwierzykowski Z, Gąsior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006a) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96: 243–251.PubMedCrossRefGoogle Scholar
  26. Kosmala A, Zwierzykowska E, Zwierzykowski Z (2006b) Chromosome pairing in triploid intergeneric hybrids of Festuca pratensis with Lolium multiflorum revealed by GISH. J Appl Genet 47: 215–220.PubMedGoogle Scholar
  27. Kosmala A, Zwierzykowski Z, Zwierzykowska E et al. (2007) Introgression mapping of genes for winter hardiness and frost tolerance transfered from Festuca arundinacea into Lolium multiflorum. J Hered 98: 311–316.PubMedCrossRefGoogle Scholar
  28. Lewis EJ (1980) Chromosome pairing in tetraploid hybrids between Lolium perenne and L. multiflorum. Theor Appl Genet 58: 137–143.CrossRefGoogle Scholar
  29. Lewis EJ, Tyler BF, Chorlton KH (1973) Annual Report of the Welsh Plant Breeding Station for 1972. Aberystwyth: Cambrian News, pp. 34–37.Google Scholar
  30. Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segment to wheat by a gametocidal system. Chromosome Res 10: 349–357.PubMedCrossRefGoogle Scholar
  31. Morgan WG, Thomas H, Lewis EJ (1988) Cytogenetic studies of hybrids between Festuca gigantea Vill. × Lolium multiflorum Lam. Plant Breeding 101: 335–343.CrossRefGoogle Scholar
  32. Morgan WG, King IP, Koch S, Harper JA, Thomas HM (2001) Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridization (GISH). Theor Appl Genet 103: 696–701.CrossRefGoogle Scholar
  33. Naganowska B, Zwierzykowski Z, Zwierzykowska E (2001) Meiosis and fertility of reciprocal hybrids of Lolium multiflorum and Festuca pratensis. J Appl Genet 42: 247–255.PubMedGoogle Scholar
  34. Osborne RT, Thomas H, Lewis EJ (1976) Annual Report of the Welsh Plant Breeding Station for 1976. Aberystwyth: Cambrian News, pp. 105–106.Google Scholar
  35. Pašakinskienė I, Jones RN (2005) A decade of ‘chromosome painting’ in Lolium and Festuca. Cytogenet Genome Res 109: 393–399.PubMedCrossRefGoogle Scholar
  36. Ślusarkiewicz-Jarzina A, Ponitka A, Zwierzykowski Z (1994) In vitro culture of ovules and embryos in intergeneric hybridization within the Lolium-Festuca complex. Genet Pol 35: 135–142.Google Scholar
  37. Springer WD, Buckner RC (1982) A meiotic examination of Lolium multiflorum Lam. × Festuca arundinacea Schreb. F1 hybrids. Crop Sci 22: 305–309.Google Scholar
  38. Sulinowski S, Wiśniewska H, Sękowska K (1982) Frequency of spontaneous polyploids in Lolium perenne and Festuca pratensis. In: Proceedings of the 11th EUCARPIA Meeting of the Fodder Crops Section, Aberystwyth, Wales, UK, September 1982, pp. 55–59.Google Scholar
  39. Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117: 1–8.CrossRefGoogle Scholar
  40. Thomas HM, Morgan WG (1990) Analysis of synaptonemal complexes and chromosome pairing at metaphase I in the diploid intergeneric hybrid Lolium multiflorum × Festuca drymeja. Genome 33: 465–471.Google Scholar
  41. Thomas H, Morgan WG, Borrill M, Evans M (1983) Meiotic behaviour in polyploid species of Festuca. In: Kew Chromosome Conference II, George Allen and Unwin, pp. 133–138.Google Scholar
  42. Thomas HM, Morgan WG, Meredith MR, Humphreys WM, Thomas H, Leggett JM (1994) Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum × Festuca pratensis by genomic in situ hybridization. Theor Appl Genet 88: 909–913.CrossRefGoogle Scholar
  43. Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future—combining the attributes of Lolium and Festuca. Euphytica 133: 19–26.CrossRefGoogle Scholar
  44. Thomas PT, Thomas H (1973) Annual Report of the Welsh Plant Breeding Station for 1973. Aberystwyth: Cambrian News, p. 85.Google Scholar
  45. Werner M (1983) Morphological characters, fertility and meiosis in the intergeneric hybrid of Lolium multiflorum Lam. (2n = 14) × Festuca pratensis Huds. (2n = 14). Genet Pol 24: 139–149.Google Scholar
  46. Zwierzykowski Z (1980) Hybrid of Lolium multiflorum Lam. (2n = 14) × Festuca arundinacea Schreb. (2n = 42) and its alloploid derivatives. II. Meiosis of F1 hybrids and C0 and C1 alloploid derivatives. Genet Pol 21: 395–407.Google Scholar
  47. Zwierzykowski Z (1996) Interspecific and intergeneric hybrids of the Lolium-Festuca complex obtained in Poland in the years 1964–1994 and maintained in the collection at the Institute of Plant Genetics in Poznañ. J Appl Genet 37: 79–100.Google Scholar
  48. Zwierzykowski Z, Rybczyński JJ (1981) Studies on tetraploid hybrids of Lolium multiflorum Lam. (2n = 28) × Festuca pratensis Huds. (2n = 28). I. Morphological characterization, fertility and chromosome number of hybrids in F1–F4 generations. Genet Pol 22: 295–303.Google Scholar
  49. Zwierzykowski Z, Zwierzykowska E (1994) Intergeneric hybridization within the Lolium-Festuca complex. Genet Pol 35A: 65–71.Google Scholar
  50. Zwierzykowski Z, Jokś W, Naganowska B (1993) Amphitetraploid hybrids Festuca pratensis Huds. × Lolium multiflorum Lam. [= × Festulolium braunii (K Richter) A Camus]. Biul IHAR 188: 61–69 (in Polish with English summary).Google Scholar
  51. Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ (1998) Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89: 324–328.CrossRefGoogle Scholar
  52. Zwierzykowski Z, Lukaszewski AJ, Naganowska B, Leśniewska A (1999) The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 42: 720–726.CrossRefGoogle Scholar
  53. Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones N, Jokś W, Bocianowski J (2006) Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theor Appl Genet 113: 539–547.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Zbigniew Zwierzykowski
    • 1
  • Elżbieta Zwierzykowska
    • 1
  • Magdalena Taciak
    • 1
  • Neil Jones
    • 2
  • Arkadiusz Kosmala
    • 1
  • Paweł Krajewski
    • 1
  1. 1.Institute of Plant GeneticsPolish Academy of SciencesPoznańPoland
  2. 2.Institute of Biological SciencesAberystwyth UniversityWalesUK

Personalised recommendations