Advertisement

Chromosome Research

, Volume 16, Issue 4, pp 563–574 | Cite as

Cytogenetic analysis of the Asian Plethodontid salamander, Karsenia koreana: Evidence for karyotypic conservation, chromosome repatterning, and genome size evolution

  • Stanley K. Sessions
  • Matthias Stöck
  • David R. Vieites
  • Ryan Quarles
  • Mi-Sook Min
  • David B. Wake
Article

Abstract

A cytogenetic analysis, including the karyotype, C-bands, silver-stained nucleolus organizer regions and genome size, was performed on the recently discovered species, Karsenia koreana, the first plethodontid salamander from Asia. The karyotype consists of 14 pairs of bi-armed chromosomes, with no evidence of heteromorphic sex chromosomes. C-banding reveals a concentration of heterochromatin at the centromeres as well as at interstitial locations. The smallest chromosome (pair number 14) has symmetrical interstitial C-bands in each arm, resembling chromosome no. 14 of North American species of its sister group taxon, supergenus Hydromantes. Acomparative analysis of C-band heterochromatin and silver-stained nucleolus organizer regions of Karsenia and other plethodontid genera reveals that chromosomal evolution may have featured chromosome ‘repatterning’ within the context of conserved chromosome number and shape in this clade. Genome size is correlated with geographic distribution in plethodontids and appears to have important phenotypic correlates as well. The genome size of Karsenia is relatively large, and resembles that of the geographically closest plethodontids from western North America, especially species of the genus Hydromantes. The biological significance of these cytogenetic characteristics of plethodontid salamanders is discussed within an evolutionary context.

Key words

cytogenetics evolution genome size Karsenia Plethodontidae salamander 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal of life history evolution in plethodontid salamanders. Evolution 58: 2809–2822.PubMedGoogle Scholar
  2. Conger AD, Fairchild LM (1953) A quick freeze method for making smear slides permanent. Stain Technol 28: 281–283.PubMedGoogle Scholar
  3. Green DM, Sessions SK (2007) Karyology and cytogenetics. In: Heatwole H, ed. Amphibian Biology, Vol. 7. Chipping Norton, Australia: Surrey Beatty & Sons, pp. 2757–2842.Google Scholar
  4. Gregory TR (2001) Animal Genome Size Database. www.genomesize.com.
  5. Gregory TR (2002) Genome size and developmental complexity. Genetica 115: 131–146.PubMedCrossRefGoogle Scholar
  6. Gregory TR (2005) Genome size evolution in animals. In: Gregory TR, ed. The Evolution of the Genome. Burlington, MA: Elsevier Academic Press, pp. 3–87.Google Scholar
  7. Hally MK, Rasch EM, Mainwaring HR, Bruce RC (1986) Cytophotometric evidence of variation in genome size of desmognathine salamanders. Histochemistry 85: 185–192.PubMedCrossRefGoogle Scholar
  8. Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginner’s guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50: 735–749.PubMedGoogle Scholar
  9. Horner HA, Macgregor HC (1983) C value and cell voume: their significance in the evolution and development of amphibians. JCell Sci 63: 135–146.PubMedGoogle Scholar
  10. Hsu TC (1981) Polymorphism in human acrocentric chromosomes and the sliver staining method for nucleolus organizer regions. Karyogram 7: 45.Google Scholar
  11. Humason GL (1972) Animal Tissue Techniques. San Francisco, CA: WH Freeman.Google Scholar
  12. Litvinchuk S, Rosanov JM, Borkin LJ (2007) Correlations of geographic distribution and temperature of embryonic development with the nuclear DNA content in the Salamandridae (Urodela, Amphibia). Genome 50: 333–342.PubMedCrossRefGoogle Scholar
  13. Macgregor HC, Jones C (1977) Chromosomes, DNA sequences, and evolution in salamanders of the genus Aneides. Chromosoma 63: 1–9.CrossRefGoogle Scholar
  14. Macgregor HC, Sherwood S (1979) The nucleolus organizers of Plethodon and Aneides located by in situ nucleic acid hybridization with Xenopus 3H-ribosomal RNA. Chromosoma 72: 271–280.PubMedCrossRefGoogle Scholar
  15. Macgregor H, Varley J (1983) Working with Animal Chromosomes. New York: Wiley.Google Scholar
  16. Mancino G, Ragghianti M, Bucci-Innocenti S (1977) Cytotaxonomy and cytogenetics in European newt species. In: Taylor DH, Guttman SI, eds. The Reproductive Biology of Amphibians. New York: Plenum, pp. 411–447.Google Scholar
  17. Min MS, Yang SY, Bonett RM, Vieites DR, Brandon RA, Wake DB (2005) Discovery of the first Asian plethodontid salamander. Nature 435: 87–90.PubMedCrossRefGoogle Scholar
  18. Mizuno S, Macgregor HC (1974) Chromosomes, DNA sequences and evolution in salamanders of the genus Plethodon. Chromosoma 48: 239–296.PubMedCrossRefGoogle Scholar
  19. Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders from complete mitochondrial genomes. Proc Natl Acad Sci USA. 101: 13820–13825.PubMedCrossRefGoogle Scholar
  20. Nardi I (1991) Cytogenetics of the European Plethodontid Salamanders, Genus Hydromantes. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. New York: Academic Press, pp. 131–156.Google Scholar
  21. Olmo E, Morescalchi A (1975) Evolution of the genome and cell sizes in salamanders. Experientia 31: 804–806.PubMedCrossRefGoogle Scholar
  22. Roth G, Blanke J, Wake DB (1994) Cell size predicts morphological complexity in the brain of frogs of salamanders. Proc Natl Acad Sci USA 91: 4796–4800.PubMedCrossRefGoogle Scholar
  23. Schmid M, Olert J, Klett C (1979) Chromosome banding in amphibian III. Sex chromosomes in Triturus. Chromosoma (Berlin) 71: 29–55.CrossRefGoogle Scholar
  24. Sessions SK (1984) Cytogenetics and evolution in salamanders. PhD dissertation, University of California, Berkeley.Google Scholar
  25. Sessions SK (1996) Chromosomes: molecular cytogenetics. In: Hillis DM, Moritz C, Mable BK, eds. Molecular Systematics, 2nd edn. Sunderland, MA: Sinauer Associates, pp. 121–168.Google Scholar
  26. Sessions SK (2008) Evolutionary cytogenetics in salamanders. Chromosome Res 16: 183–201.PubMedCrossRefGoogle Scholar
  27. Sessions SK, Kezer J (1987) Cytogenetic evolution in the plethodontid salamander genus Aneides. Chromosoma (Berlin) 95: 17–30.CrossRefGoogle Scholar
  28. Sessions SK, Kezer J (1991) Evolutionary cytogenetics of Bolitoglossine Salamanders. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. New York: Academic Press, pp. 89–130.Google Scholar
  29. Sessions SK, Larson A (1987) Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41: 1239–1251.CrossRefGoogle Scholar
  30. Sessions SK, Wiktorowski JL (2000) Population cytogenetics of the Plethodontid salamander Eurycea wilderae. In: Bruce RC, Jaeger RG, Houck LD, eds. The Biology of Plethodontid Salamanders. New York: Kluwer Academic/Plenum, pp. 327–343.Google Scholar
  31. Vieites DR, Min MS, Wake DB (2007) Rapid diversification and dispersal during global warming periods by plethodontid salamanders. Proc Natl Acad Sci USA 104: 19903–19907.PubMedCrossRefGoogle Scholar
  32. Wake DB (1966) Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem S Calif Acad Sci 4: 1–111.Google Scholar
  33. Wiens JJ, Bonett RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54: 91–110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Stanley K. Sessions
    • 1
  • Matthias Stöck
    • 2
  • David R. Vieites
    • 3
  • Ryan Quarles
    • 1
  • Mi-Sook Min
    • 4
  • David B. Wake
    • 3
  1. 1.Department of BiologyHartwick CollegeOneontaUSA
  2. 2.Department of Ecology and Evolution (DEE)University of Lausanne, UNILBiophoreSwitzerland
  3. 3.Museum of Vertebrate Zoology and Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA
  4. 4.Conservation Genome Resource Bank for Korean Wildlife, BK21 Program for Veterinary Science, Laboratory of Wildlife Conservation Genetics, College of Veterinary MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations