Skip to main content
Log in

Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1–9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S–28S rRNA genes and telomeric (TTAGGG) n sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avise JC, Nelson WS, Sibley CG (1994) DNA sequence support for a close phylogenetic relationship between some storks and New World vultures. Proc Natl Acad Sci USA 91: 5173–5177.

    Article  PubMed  CAS  Google Scholar 

  • Bed’Hom B, Coullin P, Guillier-Gencik Z, Moulin S, Bernheim A, Volobouev V (2003) Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res 11: 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Belterman RHR, de Boer LEM (1984) A karyological study of 55 species of birds, including karyotypes of 39 species new to cytology. Genetica 65: 39–82.

    Article  Google Scholar 

  • Belterman RHR, de Boer LEM (1990) A miscellaneous collection of bird karyotypes. Genetica 83: 17–29.

    Google Scholar 

  • Burt DW, Bruley C, Dunn IC et al. (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402: 411–413.

    Article  PubMed  CAS  Google Scholar 

  • de Boer LEM (1975) Karyological heterogeneity in the Falconiformes (Aves). Experientia 31: 1138–1139.

    Article  PubMed  Google Scholar 

  • de Boer LEM (1976) The somatic chromosome complements of 16 species of Falconiformes (Aves) and the karyological relationships of the order. Genetica 46: 77–113.

    Article  Google Scholar 

  • de Boer LEM, Sinoo RP (1984) A karyological study of Accipitridae (Aves: Falconiformes), with karyotypic descriptions of 16 species new to cytology. Genetica 65: 89–107.

    Article  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J, ed. (1994) Handbook of the Birds of the World, vol. 2. Barcelona: Lynx Edicions, pp. 216–275.

    Google Scholar 

  • de Oliveira EHC, Habermann FA, Lacerda O, Sbalqueiro IJ, Wienberg J, Müller S (2005) Chromosome reshuffling in birds of prey: the karyotype of the world’s largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). Chromosoma 114: 338–343.

    Article  PubMed  Google Scholar 

  • Derjusheva S, Kurganova A, Habermann F, Gaginskaya E (2004) High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Res 12: 715–723.

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Haberman F, Masabanda J et al. (1999) Micro- and macrochromosome paints generated by flow cytometry and microdissection: tools for mapping the chicken genome. Cytogenet Cell Genet 87: 278–281.

    Article  PubMed  CAS  Google Scholar 

  • Griffin DK, Robertson LBW, Tempest HG, Skinner BM (2007) The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 117: 64–77.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths CS (1999) Phylogeny of the Falconidae inferred from molecular and morphological data. The Auk 116: 116–130.

    Google Scholar 

  • Griffiths CS, Barrowclough GF, Groth JG, Mertz L (2004) Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data. Mol Phylogenet Evol 32: 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003) Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species. Cytogenet Genome Res 103: 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Habermann FA, Cremer M, Walter J et al. (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9: 569–584.

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Arnold AP (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102: 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Lerner HRL, Mindell DP (2005) Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol 37: 327–346.

    Article  PubMed  CAS  Google Scholar 

  • Longmire JL, Lewis AK, Brown NC et al. (1988) Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics 2: 14–24.

    Article  PubMed  CAS  Google Scholar 

  • Masabanda JS, Burt DW, O’Brien PCM et al. (2004) Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166: 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Chapman VM (1995) Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16: 261–272.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Schrama D, Feichtinger W, Haaf T, Schartl M, Schmid M (2002) Distribution of telomeric (TTAGGG) n sequences in avian chromosomes. Chromosoma 111: 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Karl E, Volobouev V, Griffin DK, Schartl M, Schmid M (2006) Extensive gross genomic rearrangements between chicken and Old World vultures (Falconiformes: Accipitridae). Cytogenet Genome Res 112: 286–295.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Karl E, Griffin DK, Schartl M, Schmid M (2007) Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Nishida-Umehara C, Tsuda Y, Ishijima J, et al. (2007) The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 15: 721–734.

    Article  PubMed  CAS  Google Scholar 

  • Padilla JA, Martinez-Trancón M, Rabasco A, Fernández-García JL (1999) The karyotype of the Iberian imperial eagle (Aquila adalberti) analyzed by classical and DNA replication banding. Cytogenet Cell Genet 84: 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Houck ML, O’Brien PC, Ferguson-Smith MA, Ryder OA, Chowdhary BP (2002) Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes. Cytogenet Genome Res 98: 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Takagi N, Nishida C (1984) Current profiles of avian cytogenetics, with notes on chromosomal diagnosis of sex in birds. The Nucleus 27: 63–73.

    Google Scholar 

  • Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6: 342–347.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Nanda I, Guttenbach M et al. (2000) First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 90: 169–218.

    Article  PubMed  CAS  Google Scholar 

  • Schmutz SM, Oliphant LW (1987) Chromosome study of peregrine, prairie, and gyrfalcons with implications for hybrids. J Hered 78: 388–390.

    Google Scholar 

  • Seibold I, Helbig AJ (1995) Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos Trans R Soc Lond B 350: 163–178.

    Article  CAS  Google Scholar 

  • Shetty S, Griffin DK, Graves JAM (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Shibusawa M, Nishida-Umehara C, Masabanda J, Griffin DK, Isobe T, Matsuda Y (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet Genome Res 98: 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Shibusawa M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y (2004a) A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica, Odontophoridae). Cytogenet Genome Res 106: 82–90.

    Article  CAS  Google Scholar 

  • Shibusawa M, Nishibori M, Nishida-Umehara C, et al. (2004b) Karyotypic evolution in the Galliformes: An examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet Genome Res 106: 111–119.

    Article  CAS  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven, CT: Yale University Press.

    Google Scholar 

  • Sibley CG, Monroe Jr, BL (1990) Distribution and Taxonomy of Birds of the World. New Haven, CT: Yale University Press.

    Google Scholar 

  • Takagi N, Sasaki M (1974) A phylogenetic study of bird karyotypes. Chromosoma 46: 91–120.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J (2004) The evolution of eutherian chromosomes. Curr Opin Genet Dev 14: 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R (1995) Chromosome painting in mammals as an approach to comparative genomics. Curr Opin Genet Dev 5: 792–797.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, C., Ishijima, J., Kosaka, A. et al. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res 16, 171–181 (2008). https://doi.org/10.1007/s10577-007-1210-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1210-6

Key words

Navigation