Chromosome Research

, Volume 16, Issue 1, pp 171–181 | Cite as

Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

  • Chizuko Nishida
  • Junko Ishijima
  • Ayumi Kosaka
  • Hideyuki Tanabe
  • Felix A. Habermann
  • Darren K. Griffin
  • Yoichi Matsuda


Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1–9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S–28S rRNA genes and telomeric (TTAGGG) n sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae.

Key words

Accipitridae chromosome evolution Falconinae homology karyotype rearrangements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise JC, Nelson WS, Sibley CG (1994) DNA sequence support for a close phylogenetic relationship between some storks and New World vultures. Proc Natl Acad Sci USA 91: 5173–5177.PubMedCrossRefGoogle Scholar
  2. Bed’Hom B, Coullin P, Guillier-Gencik Z, Moulin S, Bernheim A, Volobouev V (2003) Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res 11: 335–343.PubMedCrossRefGoogle Scholar
  3. Belterman RHR, de Boer LEM (1984) A karyological study of 55 species of birds, including karyotypes of 39 species new to cytology. Genetica 65: 39–82.CrossRefGoogle Scholar
  4. Belterman RHR, de Boer LEM (1990) A miscellaneous collection of bird karyotypes. Genetica 83: 17–29.Google Scholar
  5. Burt DW, Bruley C, Dunn IC et al. (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402: 411–413.PubMedCrossRefGoogle Scholar
  6. de Boer LEM (1975) Karyological heterogeneity in the Falconiformes (Aves). Experientia 31: 1138–1139.PubMedCrossRefGoogle Scholar
  7. de Boer LEM (1976) The somatic chromosome complements of 16 species of Falconiformes (Aves) and the karyological relationships of the order. Genetica 46: 77–113.CrossRefGoogle Scholar
  8. de Boer LEM, Sinoo RP (1984) A karyological study of Accipitridae (Aves: Falconiformes), with karyotypic descriptions of 16 species new to cytology. Genetica 65: 89–107.CrossRefGoogle Scholar
  9. del Hoyo J, Elliott A, Sargatal J, ed. (1994) Handbook of the Birds of the World, vol. 2. Barcelona: Lynx Edicions, pp. 216–275.Google Scholar
  10. de Oliveira EHC, Habermann FA, Lacerda O, Sbalqueiro IJ, Wienberg J, Müller S (2005) Chromosome reshuffling in birds of prey: the karyotype of the world’s largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). Chromosoma 114: 338–343.PubMedCrossRefGoogle Scholar
  11. Derjusheva S, Kurganova A, Habermann F, Gaginskaya E (2004) High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Res 12: 715–723.PubMedCrossRefGoogle Scholar
  12. Griffin DK, Haberman F, Masabanda J et al. (1999) Micro- and macrochromosome paints generated by flow cytometry and microdissection: tools for mapping the chicken genome. Cytogenet Cell Genet 87: 278–281.PubMedCrossRefGoogle Scholar
  13. Griffin DK, Robertson LBW, Tempest HG, Skinner BM (2007) The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 117: 64–77.PubMedCrossRefGoogle Scholar
  14. Griffiths CS (1999) Phylogeny of the Falconidae inferred from molecular and morphological data. The Auk 116: 116–130.Google Scholar
  15. Griffiths CS, Barrowclough GF, Groth JG, Mertz L (2004) Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data. Mol Phylogenet Evol 32: 101–109.PubMedCrossRefGoogle Scholar
  16. Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003) Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species. Cytogenet Genome Res 103: 173–184.PubMedCrossRefGoogle Scholar
  17. Habermann FA, Cremer M, Walter J et al. (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9: 569–584.PubMedCrossRefGoogle Scholar
  18. Itoh Y, Arnold AP (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13: 47–56.PubMedCrossRefGoogle Scholar
  19. Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102: 326–330.PubMedCrossRefGoogle Scholar
  20. Lerner HRL, Mindell DP (2005) Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol 37: 327–346.PubMedCrossRefGoogle Scholar
  21. Longmire JL, Lewis AK, Brown NC et al. (1988) Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics 2: 14–24.PubMedCrossRefGoogle Scholar
  22. Masabanda JS, Burt DW, O’Brien PCM et al. (2004) Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166: 1367–1373.PubMedCrossRefGoogle Scholar
  23. Matsuda Y, Chapman VM (1995) Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16: 261–272.PubMedCrossRefGoogle Scholar
  24. Nanda I, Schrama D, Feichtinger W, Haaf T, Schartl M, Schmid M (2002) Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma 111: 215–227.PubMedCrossRefGoogle Scholar
  25. Nanda I, Karl E, Volobouev V, Griffin DK, Schartl M, Schmid M (2006) Extensive gross genomic rearrangements between chicken and Old World vultures (Falconiformes: Accipitridae). Cytogenet Genome Res 112: 286–295.PubMedCrossRefGoogle Scholar
  26. Nanda I, Karl E, Griffin DK, Schartl M, Schmid M (2007) Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117: 43–53.PubMedCrossRefGoogle Scholar
  27. Nishida-Umehara C, Tsuda Y, Ishijima J, et al. (2007) The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 15: 721–734.PubMedCrossRefGoogle Scholar
  28. Padilla JA, Martinez-Trancón M, Rabasco A, Fernández-García JL (1999) The karyotype of the Iberian imperial eagle (Aquila adalberti) analyzed by classical and DNA replication banding. Cytogenet Cell Genet 84: 61–66.PubMedCrossRefGoogle Scholar
  29. Raudsepp T, Houck ML, O’Brien PC, Ferguson-Smith MA, Ryder OA, Chowdhary BP (2002) Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes. Cytogenet Genome Res 98: 54–60.PubMedCrossRefGoogle Scholar
  30. Sasaki M, Takagi N, Nishida C (1984) Current profiles of avian cytogenetics, with notes on chromosomal diagnosis of sex in birds. The Nucleus 27: 63–73.Google Scholar
  31. Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6: 342–347.PubMedCrossRefGoogle Scholar
  32. Schmid M, Nanda I, Guttenbach M et al. (2000) First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 90: 169–218.PubMedCrossRefGoogle Scholar
  33. Schmutz SM, Oliphant LW (1987) Chromosome study of peregrine, prairie, and gyrfalcons with implications for hybrids. J Hered 78: 388–390.Google Scholar
  34. Seibold I, Helbig AJ (1995) Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos Trans R Soc Lond B 350: 163–178.CrossRefGoogle Scholar
  35. Shetty S, Griffin DK, Graves JAM (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7: 289–295.PubMedCrossRefGoogle Scholar
  36. Shibusawa M, Nishida-Umehara C, Masabanda J, Griffin DK, Isobe T, Matsuda Y (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet Genome Res 98: 225–230.PubMedCrossRefGoogle Scholar
  37. Shibusawa M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y (2004a) A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica, Odontophoridae). Cytogenet Genome Res 106: 82–90.CrossRefGoogle Scholar
  38. Shibusawa M, Nishibori M, Nishida-Umehara C, et al. (2004b) Karyotypic evolution in the Galliformes: An examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet Genome Res 106: 111–119.CrossRefGoogle Scholar
  39. Sibley CG, Ahlquist JE (1990) Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven, CT: Yale University Press.Google Scholar
  40. Sibley CG, Monroe Jr, BL (1990) Distribution and Taxonomy of Birds of the World. New Haven, CT: Yale University Press.Google Scholar
  41. Takagi N, Sasaki M (1974) A phylogenetic study of bird karyotypes. Chromosoma 46: 91–120.PubMedCrossRefGoogle Scholar
  42. Wienberg J (2004) The evolution of eutherian chromosomes. Curr Opin Genet Dev 14: 657–666.PubMedCrossRefGoogle Scholar
  43. Wienberg J, Stanyon R (1995) Chromosome painting in mammals as an approach to comparative genomics. Curr Opin Genet Dev 5: 792–797.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Chizuko Nishida
    • 1
  • Junko Ishijima
    • 1
  • Ayumi Kosaka
    • 1
  • Hideyuki Tanabe
    • 2
  • Felix A. Habermann
    • 3
  • Darren K. Griffin
    • 4
  • Yoichi Matsuda
    • 1
  1. 1.Laboratory of Animal CytogeneticsCreative Research Initiative “Sousei”, Hokkaido UniversitySapporoJapan
  2. 2.Department of Evolutionary Studies of Biosystems, School of Advanced SciencesThe Graduate University for Advanced StudiesKanagawaJapan
  3. 3.Institute of Veterinary AnatomyHistology and EmbryologyMunchenGermany
  4. 4.Department of BiosciencesUniversity of KentCanterburyUK

Personalised recommendations