Advertisement

Chromosome Research

, Volume 16, Issue 2, pp 275–289 | Cite as

Genealogical relationships of southern Ontario polyploid unisexual salamanders (genus Ambystoma) inferred from intergenomic exchanges and major rDNA cytotypes

  • Ke Bi
  • James P. Bogart
  • Jinzhong Fu
Article

Abstract

North American unisexual salamanders in the genus Ambystoma are common around the Great Lakes region of North America. They contain an almost identical mitochondrial genome across their distribution that is unlike that of any of the four species whose genomes may be included in their nuclei. Thus, sequence-based phylogenies of unisexual populations are confusing. We used chromosomal intergenomic exchanges and major rDNA cytotypes as combined cytogenetic markers to tentatively construct a genealogy of unisexual Ambystoma in southern Ontario. We employed GISH and sequential/simultaneous GISH/FISH-rDNA to reveal intergenomic exchanges and rDNA cytotypes in unisexual A. laterale – 2 jeffersonianum (LJJ) triploids and their tetraploid derivative A. laterale – 3 jeffersonianum (LJJJ). We identified 10 different patterns of intergenomic exchanges from 18 isolated populations and used them as primary cytogenetic markers. Major rDNA cytotypes served as independent and supplementary markers. Our results suggest that current LJJ and LJJJ populations in southern Ontario are likely derived from a few unisexual individuals. Intergenomic exchanges are common phenomena and widely distributed in the salamanders of the A. lateraleA. jeffersonianum unisexual complex. Integration of GISH and FISH can exhibit multiple unrelated chromosomal markers on the same chromosome spread and demonstrate lineage relationships in unisexual populations. Similar methods may be applied for studying the molecular cytogenetics of other unisexuals to improve our understanding of their genealogical relationships and historical dispersal.

Key words

Ambystoma cytotypes fluorescence in situ hybridization GISH intergenomic exchanges polyploid rDNA unisexual 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya CT, Gold JR (1988) Chromosomal NORs as taxonomic and systematic characters in North American cyprinid fishes. Genetica 76: 81–90.CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press.Google Scholar
  3. Avise JC, Quattro JM, Vrijenhoek RC (1992) Molecular clones within organismal clones. In: MK Hecht, ed. Evolutionary Biology 26. New York: Plenum Press, pp. 225–246.Google Scholar
  4. Bi K, Bogart JP (2006) Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res 112: 307–312.PubMedCrossRefGoogle Scholar
  5. Bi K, Bogart JP, Fu J (2007) Intergenomic translocations in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata). Cytogenet Genome Res 116: 289–297.PubMedCrossRefGoogle Scholar
  6. Bogart JP (1982) Ploidy and genetic diversity in Ontario salamanders of the Ambystoma jeffersonianum complex revealed through an electrophoretic examination of larvae. Can J Zool 60: 848–855.Google Scholar
  7. Bogart JP (2003) Genetics and systematics of hybrid species. In Sever DM, ed. Reproductive Biology and Phylogeny of Urodela. Enfield, New Hampshire: Science Publishers, Inc., pp. 109–134.Google Scholar
  8. Bogart JP, Klemens MW (1997) Hybrids and genetic interactions of mole salamanders (Ambystoma jeffersonianum and A. laterale) (Amphibia: Caudata) in New York and New England. Am Mus Novit 3128: 1–78.Google Scholar
  9. Bogart JP, Bi K, Fu J, Noble D, Niedzwiecki J (2007) Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50: 119–136.PubMedCrossRefGoogle Scholar
  10. Boró A, Ozouf-Costaz C, Jean-Pierre C, Woroniecka K (2006) Gene mapping of 28S and 5S rDNA sites in the spined loach Cobitis taenia (Pisces, Cobitidae) from a diploid population and a diploid–tetraploid population. Genetica 128: 71–79.CrossRefGoogle Scholar
  11. Castro J, Rodríguez S, Pardo BG , Sanchez L, Martinez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.). Heredity 86: 291–302.PubMedCrossRefGoogle Scholar
  12. Conant R, Collins JT (1998) Reptiles and Amphibians: Eastern and Central North America, 3rd edn. New York: Houghton Mifflin.Google Scholar
  13. De Lucchini S, Nardi I, Barsacchi G, Batistoni R, Andronico F (1993) Molecular cytogenetics of the ribosomal (18S + 28S and 5S) DNA loci in primitive and advanced urodele amphibians. Genome 36: 762–773.CrossRefPubMedGoogle Scholar
  14. Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53: 470–484.PubMedCrossRefGoogle Scholar
  15. Dong F, McGrath JM, Helgeson JP, Jiang J (2001) The genetic identity of alien chromosomes in potato breeding lines revealed by sequential GISH and FISH analyses using chromosome-specific cytogenetic DNA markers. Genome 44: 729–734.PubMedCrossRefGoogle Scholar
  16. Flanagan NS, Mason PL, Gosálvez J, Hewitt GM (1999) Chromosomal differentiation through an Alpine hybrid zone in the grasshopper Chorthippus parallelus. J Evol Biol 12: 577–585.CrossRefGoogle Scholar
  17. Hatanaka T, Galetti Jr PM (2004) Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122: 239–244.PubMedCrossRefGoogle Scholar
  18. Hedges SB, Bogart JP, Maxson LR (1992) Ancestry of unisexual salamanders. Nature 356: 708–710.PubMedCrossRefGoogle Scholar
  19. Kamstra SA, de Jong JH, Jacobsen E, Ramanna MS, Kuipers AGJ (2004) Meiotic behaviour of individual chromosomes in allotriploid Alstroemeria hybrids. Heredity 93: 15–21.PubMedCrossRefGoogle Scholar
  20. Kezer J, Sessions SK (1979) Chromosome variation in the plethodontid salamander Aneides ferreus. Chromosoma 71: 65–80.CrossRefGoogle Scholar
  21. Lim KY, Matyásek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109: 245–258.PubMedCrossRefGoogle Scholar
  22. Macgregor HC, Uzzell TM (1964) Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science 143: 1043–1045.PubMedCrossRefGoogle Scholar
  23. Macgregor HC, Vlad M, Barnett L (1977) An investigation of some problems concerning nucleolus organizers in salamanders. Chromosoma 59: 283–299.CrossRefGoogle Scholar
  24. Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105: 231–236.CrossRefGoogle Scholar
  25. Petranka JW (1998) Salamanders of the United States and Canada. Washington DC: Smithsonian Institution Press.Google Scholar
  26. Sessions SK (1982) Cytogenetics of diploid and triploid salamanders of the Ambystoma jeffersonianum complex. Chromosoma 84: 599–621.CrossRefGoogle Scholar
  27. Schmid M, Feichtinger W, Weimer R, Mais C, Bolanos F, Leon P (1995) Chromosome banding in Amphibia. XXI. Inversion polymorphism and multiple nucleolus organizer regions in Agalychnis callidryas (Anura, Hylidae). Cytogenet Cell Genet 69: 18–26.PubMedGoogle Scholar
  28. Siroky J, Zluvova J, Riha K, Shippen DE, Vyskot B (2003) Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma 112: 116–123.PubMedCrossRefGoogle Scholar
  29. Sola L, Galetti PM, Monaco PJ, Rasch EM (1997) Cytogenetics of bisexual/unisexual species of Poecilia. VI. Additional nucleolus organizer region chromosomal clones of Poecilia formosa (Amazon molly) from Texas, with a survey of chromosomal clones detected in the Amazon molly. Heredity 78: 612–619.CrossRefGoogle Scholar
  30. Taylor AS, Bogart JP (1990) Karyotypic analyses of four species of Ambystoma (Amphibia, Caudata) which have been implicated in the production of all-female hybrids. Genome 33: 837–844.Google Scholar
  31. Templeton AR (2004) Statistical phylogeography: methods for evaluating and minimizing inference errors. Mol Ecol 13: 789–809.PubMedCrossRefGoogle Scholar
  32. Uzzell TM, Goldblatt SM (1967) Serum proteins of salamanders of the Ambystoma jeffersonianum complex. Copeia 1967: 602–612.CrossRefGoogle Scholar
  33. Zheng Q, Li B, Mu S, Zhou H, Li Z (2006) Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome 49: 1109–1114.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada

Personalised recommendations