Advertisement

Chromosome Research

, Volume 15, Issue 3, pp 283–298 | Cite as

Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison

  • Svetlana A. Romanenko
  • Vitaly T. Volobouev
  • Polina L. Perelman
  • Vladimir S. Lebedev
  • Natalya A. Serdukova
  • Vladimir A. Trifonov
  • Larisa S. Biltueva
  • Wenhui Nie
  • Patricia C. M. O’Brien
  • Nina Sh. Bulatova
  • Malcolm A. Ferguson-Smith
  • Fengtang Yang
  • Alexander S. Graphodatsky
Article

Abstract

The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.

Key words

chromosome painting comparative chromosome maps Cricetidae genome evolution phylogeny Rodentia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins RM, Walton AH, Honeycutt RL (2002) Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol Phylogenet Evol 26: 409–420.CrossRefGoogle Scholar
  2. Aniskin VM, Benazzou T, Biltueva L, Dobigny G, Granjon L, Volobouev V (2006) Unusually extensive karyotype reorganization in four congeneric Gerbillus species (Muridae: Gerbillinae). Cytogenet Genome Res 112: 131–140.PubMedCrossRefGoogle Scholar
  3. Carleton MD, Musser GG (2005) Order Rodentia. In Wilson E, Reeder D-AM, eds., Mammal Species of the World: a Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press, pp. 926–930, 1039–1186.Google Scholar
  4. Cavagna P, Stone G, Stanyon R (2002) Black rat (Rattus rattus) genomic variability characterized by chromosome painting. Mamm Genome 13: 157–163.PubMedGoogle Scholar
  5. Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53: 470–484.PubMedCrossRefGoogle Scholar
  6. Engelbrecht A, Dobigny G, Robinson TJ (2006) Further insights into the ancestral murine karyotype: the contribution of the Otomys–Mus comparison using chromosome painting. Cytogenet Genome Res 112: 126–130.PubMedCrossRefGoogle Scholar
  7. Ferguson-Smith MA, Yang F, O’Brien PC (1998) Comparative mapping using chromosome sorting and painting. ILAR J 39: 68–76.PubMedGoogle Scholar
  8. Froenicke L, Caldes MG, Graphodatsky A et al. (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16: 306–310.PubMedCrossRefGoogle Scholar
  9. Gamperl R, Vistorin G, Rosenkranz W (1978) Comparison of chromosome banding patterns in five members of Cricetinae with comments on possible relationships. Caryologia 31: 343–353.Google Scholar
  10. Graphodatsky AS (1989) Conserved and variable elements of mammalian chromosomes. In Halnan CRE, ed., Cytogenetics of Animals. Oxford: CAB International Press, pp. 95–123.Google Scholar
  11. Graphodatsky AS, Sablina OV, Meyer MN et al. (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88: 296–304.PubMedCrossRefGoogle Scholar
  12. Graphodatsky AS, Yang F, O’Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.PubMedCrossRefGoogle Scholar
  13. Guilly M-N, Dano L, de Chamisso P, Fouchet P, Dutrillaux B, Chevillard S (2001) Comparative karyotype using bidirectional chromosome painting: how and why? Methods Cell Sci 23: 163–170.PubMedCrossRefGoogle Scholar
  14. Guilly M-N, Fouchet P, de Chamisso P, Schmitz A, Dutrillaux B (1999) Comparative karyotype of rat and mouse using bidirectional chromosome painting. Chromosome Res 7: 213–221.PubMedCrossRefGoogle Scholar
  15. Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31: 256–276.PubMedCrossRefGoogle Scholar
  16. Li T, O’Brien PC, Biltueva L et al. (2004) Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosome Res 12: 317–335.PubMedCrossRefGoogle Scholar
  17. Li T, Wang J, Su W, Nie W, Yang F (2006a) Karyotypic evolution of the family Sciuridae: inferences from the genome organizations of ground squirrels. Cytogenet Genome Res 112: 270–276.PubMedCrossRefGoogle Scholar
  18. Li T, Wang J, Su W, Yang F (2006b) Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Cytogenet Genome Res 114: 50–55.PubMedCrossRefGoogle Scholar
  19. Matsubara K, Nishuda-Umehara C, Tsuchiya K, Nukaya D, Matsuda Y (2004) Karyotypic evolution of Apodemus (Muridae, Rodentia) inferred from comparative FISH analyses. Chromosome Res 12: 383–395.PubMedCrossRefGoogle Scholar
  20. Matsubara K, Nishida-Umehara C, Kuriowa A, Tsuchiya K, Matsuda Y (2003) Identification of chromosome rearrangements between the laboratory mouse (Mus musculus) and the Indian spiny mouse (Mus platythrix) by comparative FISH analysis. Chromosome Res 11: 57–64.PubMedCrossRefGoogle Scholar
  21. Michaux J, Reyes A, Catzeftis F (2001) Evolutionary history of the most specious mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18: 2017–2031.PubMedGoogle Scholar
  22. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.PubMedCrossRefGoogle Scholar
  23. Murphy WJ, Larkin DM, Everts-van der Wind A et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309: 613–617.PubMedCrossRefGoogle Scholar
  24. Murphy WJ, Stanyon, O’Brien SJ (2001b) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: 1–8.CrossRefGoogle Scholar
  25. Neumann K, Michaux J, Lebedev V et al. (2006) Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene. Mol Phylogenet Evol 39: 135–148.PubMedCrossRefGoogle Scholar
  26. Radjabli SI (1975) The karyotypic differentiation of Palaearctic hamsters (Rodentia, Cricetidae). Reports of AS of USSR 225: 697–700.Google Scholar
  27. Radjabli SI, Sablina OV, Graphodatsky AS (2006) Selected karyotypes. In O’Brien SJ, Nash WG, Menninger JC, eds., ATLAS of Mammalian Karyotypes. Chichester: John Wiley, pp. 188, 200–221.Google Scholar
  28. Rambau RV, Robinson TJ (2003) Chromosome painting in the African four-striped mouse Rhabdomys pumilio: detection of possible murid specific contiguous segment combination. Chromosome Res 11: 91–98.PubMedCrossRefGoogle Scholar
  29. Richard F, Messaoudi C, Bonnet-Gamier A, Lombard M, Dutrillaux B (2003) Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by ZOO-FISH with human probes. Chromosome Res 11: 597–603.PubMedCrossRefGoogle Scholar
  30. Romanenko SA, Perelman PL, Serdukova NA et al. (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17: 1183–1192.PubMedCrossRefGoogle Scholar
  31. Schmid M, Haaf T, Weis H, Schempp W (1986) Chromosomal homoeologies in hamster species of the genus Phodopus (Rodentia, Cricetinae). Cytogenet Cell Genet 43: 168–173.PubMedGoogle Scholar
  32. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  33. Stanyon R, Stone G, Garcia M, Froenicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82: 245–249.PubMedCrossRefGoogle Scholar
  34. Stanyon R, Yang F, Cavagna P et al. (1999) Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet 84: 150–155.PubMedCrossRefGoogle Scholar
  35. Stanyon R, Yang F, Morescalchi AM, Galleni L (2004) Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 105: 406–411.PubMedCrossRefGoogle Scholar
  36. Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-data estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53: 533–553.PubMedCrossRefGoogle Scholar
  37. Swofford DL (1998) PAUP: Phylogenetic Analysis Using Parcimony, version 4.0. Sinauer Associates, Sunderland, MA.Google Scholar
  38. Veyrunes F, Dobigny G, Yang F et al. (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc R Soc B 273: 2925–2934.PubMedCrossRefGoogle Scholar
  39. Viegas-Pequignot E, Petit D, Benazzou T et al. (1986) Chromosomal evolution in rodents. Mammalia 50: 164–202.Google Scholar
  40. Volobouev VT, Gallardo MH, Graphodatsky AS (2006) Rodents cytogenetics. In O’Brien J, Nash WG, Menninger JC, eds., ATLAS of Mammalian Karyotypes. Chichester: John Wiley, pp. 173–176.Google Scholar
  41. Vorontzov NN, Potapova EG (1979) Taxonomy of the genus Calomyscus: status of the Calomyscus in the system of Cricetidae. Zool J 58: 1391–1397 [Rusian].Google Scholar
  42. Yang F, Fu B, O’Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102: 235–243.PubMedCrossRefGoogle Scholar
  43. Yang F, O’Brien PC, Milne BS (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.PubMedCrossRefGoogle Scholar
  44. Yang F, O’Brien PCM, Ferguson-Smith MA (2000) Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8: 219–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Svetlana A. Romanenko
    • 1
  • Vitaly T. Volobouev
    • 2
  • Polina L. Perelman
    • 1
  • Vladimir S. Lebedev
    • 3
  • Natalya A. Serdukova
    • 1
  • Vladimir A. Trifonov
    • 1
    • 4
  • Larisa S. Biltueva
    • 1
  • Wenhui Nie
    • 5
  • Patricia C. M. O’Brien
    • 4
  • Nina Sh. Bulatova
    • 6
  • Malcolm A. Ferguson-Smith
    • 4
  • Fengtang Yang
    • 7
  • Alexander S. Graphodatsky
    • 1
  1. 1.Institute of Cytology and Genetics, SB RASNovosibirskRussia
  2. 2.Museum National d’Histoire Naturelle, Origine, Structure et Evolution de la BiodiversiteParisFrance
  3. 3.Zoological MuseumMoscow State UniversityMoscowRussia
  4. 4.Centre for Veterinary Science, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  5. 5.Key Laboratory of Cellular and Molecular EvolutionChinese Academy of SciencesKunmingPeople’s Republic of China
  6. 6.A. N. Severtsov Institute of Ecology and EvolutionMoscowRussia
  7. 7.Wellcome Trust Sanger InstituteCambridgeUK

Personalised recommendations