Advertisement

Chromosome Research

, Volume 15, Issue 1, pp 97–103 | Cite as

Chromosome maps of legumes

  • Nobuko Ohmido
  • Shusei Sato
  • Satoshi Tabata
  • Kiichi Fukui
Article

Abstract

Legumes are of immense importance as food and feed, and for sustainable agriculture, due to their ability to fix nitrogen. Here, the chromosome maps of the legumes soybean (Glycine max), Lotus (Lotus japonicus), and red clover (Trifolium pratense) are reviewed. These species have relatively small chromosomes and therefore are difficult to exploit for chromosome studies. Nevertheless, the identification of individual chromosomes became feasible, and chromosome maps have been developed applying image analysis and fluorescence in-situ hybridization. For Lotus japonicus, e.g. detailed chromosome maps have been developed using the information of genetic linkage maps. Future prospects of further legume chromosome mapping for breeding and genetic purposes are discussed.

Key words

chromosome image analyzing system (CHIAS) chromosome map fluorescence in-situ hybridization (FISH) legume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Report 9: 208–218.CrossRefGoogle Scholar
  2. Cannon SB, Sterck L, Rombauts S et al. (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103: 14959–14964.PubMedCrossRefGoogle Scholar
  3. Cheng Z, Buell CR, Wing RA et al. (2001) Toward a cytological characterization of the rice genome. Genome Res 11: 2133–2141.PubMedCrossRefGoogle Scholar
  4. Choi HK, Mun JH, Kim DJ et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101: 15289–15294.PubMedCrossRefGoogle Scholar
  5. de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4: 258–263.CrossRefGoogle Scholar
  6. Fuchs J, Kuhne M, Schubert I (1998b) Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107: 272–276.PubMedCrossRefGoogle Scholar
  7. Fuchs J, Strehl S, Brandes A et al. (1998a) Molecular-cytogenetic characterization of the Vicia faba genome-heterochromatin differentiation, replication patterns and sequence localization. Chromosome Res 6: 219–230.CrossRefGoogle Scholar
  8. Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81: 589–596.CrossRefGoogle Scholar
  9. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131: 872–877.PubMedCrossRefGoogle Scholar
  10. Hayashi M, Miyahara A, Sato S et al. (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8: 301–310.PubMedCrossRefGoogle Scholar
  11. Isobe S, Klimenko I, Ivashuta S et al. (2003) First RFLP linkage map of red clover (Trifolium pratense L.) based on cDNA probes and its transferability to other red clover germplasm. Theor Appl Genet 108: 105–112.PubMedCrossRefGoogle Scholar
  12. Ito M, Miyamoto J, Mori Y et al. (2000) Genome and chromosome dimensions of Lotus japonicus. J Plant Res 113: 435–442.CrossRefGoogle Scholar
  13. Kulikova O, Gualtieri G, Geurts R et al. (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27: 49–58.PubMedCrossRefGoogle Scholar
  14. Kulikova O, Geurts R, Lamine M et al. (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113: 276–283.PubMedCrossRefGoogle Scholar
  15. Pedrosa A, Sandal N, Stougaard J et al. (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161: 1661–1672.PubMedGoogle Scholar
  16. Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9: 128–132.PubMedCrossRefGoogle Scholar
  17. Sato S, Isobe S, Asamizu E et al. (2005) Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res 12: 301–364.PubMedGoogle Scholar
  18. Shi L, Zhu T, Keim P (1996) Ribosomal RNA genes in soybean and common bean: chromosomal organization, expression, and evolution. Theor Appl Genet 93: 136–141.CrossRefGoogle Scholar
  19. Singh RJ, Kim HH, Hymowitz T (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet 103: 212–218.CrossRefGoogle Scholar
  20. Skorupska H, Albertsen MC, Langholz KD et al. (1989) Detection of ribosomal RNA genes in soybean, Glycine max (L.) Merr., by in situ hybridization. Genome 32: 1091–1095.Google Scholar
  21. Stacey G, Libault M, Brechenmacher L et al. (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9: 110–121.PubMedCrossRefGoogle Scholar
  22. Taylor NL, Chen K (1988) Isolation of trisomics from crosses of diploid, triploid, and tetraploid red clover. Crop Sci 28: 209–213.CrossRefGoogle Scholar
  23. VandenBosch K, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131: 840–865.CrossRefGoogle Scholar
  24. Walling JG, Shoemaker R, Young N et al. (2006) Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172: 1893–1900.PubMedCrossRefGoogle Scholar
  25. Yanagisawa T, Tano S, Fukui K et al. (1991) Marker chromosomes commonly observed in the genus Glycine. Theor Appl Genet 81: 606–612.CrossRefGoogle Scholar
  26. Young ND, Cannon SB, Sato S et al. (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137: 1174–1181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Nobuko Ohmido
    • 1
  • Shusei Sato
    • 2
  • Satoshi Tabata
    • 2
  • Kiichi Fukui
    • 3
  1. 1.Faculty of Human DevelopmentKobe UniversityKobeJapan
  2. 2.Kazusa DNA Research InstituteKisarazuJapan
  3. 3.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations