Chromosome Research

, Volume 14, Issue 4, pp 417–431 | Cite as

Dosage compensation, the origin and the afterlife of sex chromosomes



Over the past 100 years Drosophila has been developed into an outstanding model system for the study of evolutionary processes. A fascinating aspect of evolution is the differentiation of sex chromosomes. Organisms with highly differentiated sex chromosomes, such as the mammalian X and Y, must compensate for the imbalance in gene dosage that this creates. The need to adjust the expression of sex-linked genes is a potent force driving the rise of regulatory mechanisms that act on an entire chromosome. This review will contrast the process of dosage compensation in Drosophila with the divergent strategies adopted by other model organisms. While the machinery of sex chromosome compensation is different in each instance, all share the ability to direct chromatin modifications to an entire chromosome. This review will also explore the idea that chromosome-targeting systems are sometimes adapted for other purposes. This appears the likely source of a chromosome-wide targeting system displayed by the Drosophila fourth chromosome.

Key words

dosage compensation Drosophila msl Pof sex chromosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler DA, Rugarli EI, Lingenfelter PA et al. (1997) Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc Natl Acad Sci USA 94: 9244–9248.PubMedCrossRefGoogle Scholar
  2. Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367–375.PubMedCrossRefGoogle Scholar
  3. Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein–RNA interaction modules. Nature 407: 405–409.PubMedCrossRefGoogle Scholar
  4. Alekseyenko AA, Park PJ, Larschan E, Lai WR, Kuroda MI (2006) High resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively indentifies active genes on the male X chromosome. Genes Dev 20: 848–857.PubMedCrossRefGoogle Scholar
  5. Andersen AA, Panning B (2003) Epigenetic regulation by non-coding RNAs. Curr Opin Cell Biol 15: 281–289.PubMedCrossRefGoogle Scholar
  6. Ashburner M, Golic KG, Hawley RS (2005) Drosophila, A Laboratory Handbook. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  7. Bachtrog D (2003a) Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes of Drosophila. Nat Genet 34: 215–219.PubMedCrossRefGoogle Scholar
  8. Bachtrog D (2003b) Protein evolution and codon bias on the neo-sex chromosomes of Drosophila miranda. Genetics 165: 1221–1232.PubMedGoogle Scholar
  9. Bachtrog D (2005) Sex chromosome evolution: molecular aspects of Y-chromosome degeneration in Drosophila. Genome Res 15: 1393–1401.PubMedCrossRefGoogle Scholar
  10. Bai X, Alekseyenko AA, Kuroda MI (2004) Sequence-specific targeting of MSL complex regulates transcription of the roX RNA genes. EMBO J 23: 2853–2861.PubMedCrossRefGoogle Scholar
  11. Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97: 6634–6639.PubMedCrossRefGoogle Scholar
  12. Baker BS (1989) Sex in flies: the splice of life. Nature 340: 521–524.PubMedCrossRefGoogle Scholar
  13. Baker BS, Gorman M, Marin I (1994) Dosage compensation in Drosophila. Annu Rev Genet 28: 491–521.PubMedCrossRefGoogle Scholar
  14. Beckmann K, Grskovic M, Gebauer F, Hentze MW (2005) A dual inhibitory mechanism restricts msl2 translation for dosage compensation in Drosophila. Cell 122: 529–540.PubMedCrossRefGoogle Scholar
  15. Belote JM (1983) Male-specific lethal mutations of Drosophila melanogaster. II. parameters of gene action during male development. Genetics 105: 881–896.PubMedGoogle Scholar
  16. Birchler JA, Pal-Bhadra M, Bhadra U (2003) Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117: 179–190.PubMedCrossRefGoogle Scholar
  17. Bone JR, Kuroda MI (1996) Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics 144: 705–713.PubMedGoogle Scholar
  18. Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8: 96–104.PubMedGoogle Scholar
  19. Bridges CB (1925) Sex in relation to chromosomes and genes. Am Nat 59: 127–137.CrossRefGoogle Scholar
  20. Bull JJ (1983) Evolution of Sex Determining Mechanisms. Menlo Park, California: Benjamin/Cummings.Google Scholar
  21. Buscaino A, Kocher T, Kind JH et al. (2003) MOF-regulated acetylation of MSL3 in the Drosophila dosage compensation complex. Mol Cell 11: 1265–1277.PubMedCrossRefGoogle Scholar
  22. Carvalho AB (2002) Origin and evolution of the Drosophila Y chromosome. Curr Opin Genet Dev 12: 664–668.PubMedCrossRefGoogle Scholar
  23. Carvalho AB, Lazzaro BP, Clark AG (2000) Y chromosome fetility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc Natl Acad Sci USA 97: 13239–13244.PubMedCrossRefGoogle Scholar
  24. Chadwick BP, Willard HF (2003) Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 14: 359–367.PubMedCrossRefGoogle Scholar
  25. Cline TW (1984) Autoregulation functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 107: 231–277.PubMedGoogle Scholar
  26. Cline TW, Meyer BJ (1996) Vive la difference: males vs females in flies vs worms. Annu Rev Genet 30: 637–702.PubMedCrossRefGoogle Scholar
  27. Copps K, Richman R, Lyman LM, Chang KA, Rampersad-Ammons J, Kuroda MI (1998) Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J 17: 5409–5417.PubMedCrossRefGoogle Scholar
  28. Csankovszki G, McDonel P, Meyer BJ (2004) Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science 303: 182–185.CrossRefGoogle Scholar
  29. Dahlsveen IK, Gilfillan GD, Shelest VI, Lamm R, Becker PB (2006) Targeting determinants of dosage compensation in Drosophila. PLoS Genet 2: e5.PubMedCrossRefGoogle Scholar
  30. Demakova OV, Kotlikova IV, Gordadze PR, Alekseyenko AA, Kuroda MI, Zhimulev IF (2003) The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 112: 103–115.PubMedCrossRefGoogle Scholar
  31. Ebert A, Schotta G, Lein S et al. (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18: 2973–2983.PubMedCrossRefGoogle Scholar
  32. Eisen A, Utley RT, Nourani A et al. (2001) The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation. J Biol Chem 276: 3484–3491.PubMedCrossRefGoogle Scholar
  33. Fagegaltier D, Baker BS (2004) X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males. PLoS Biol 2: e341.PubMedCrossRefGoogle Scholar
  34. Fitzsimons HL, Henry RA, Scott MJ (1999) Development of an insulated reporter system to search for cis-acting DNA sequences required for dosage compensation in Drosophila. Genetica 105: 215–226.PubMedCrossRefGoogle Scholar
  35. Fung S-TC, Gowen JW (1960) Role of autosome-IV in Drosophila melanogaster sex balance. Genetics 45: 988–989.Google Scholar
  36. Gergen JP (1987) Dosage compensation in Drosophila: evidence that daughterless and Sexlethal control X chromosome activity at the blastoderm stage of embryogenesis. Genetics 117: 477–485.PubMedGoogle Scholar
  37. Gilfillan GD, Straub T, de Wit E et al. (2006) Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev 20: 858–870.PubMedCrossRefGoogle Scholar
  38. Gupta A, Sharma GG, Young CS et al. (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25: 5292–5305.PubMedCrossRefGoogle Scholar
  39. Gupta V, Parisi M, Sturgill D et al. (2006) X-Chromosome compensation in Drosophila germ cells. J Biol 5: 3.PubMedCrossRefGoogle Scholar
  40. Hagstrom KA, Meyer BJ (2003) Condensin and cohesin: more than chromosome compactor and glue. Nat Rev Genet 4: 520–534.PubMedCrossRefGoogle Scholar
  41. Hamada FN, Park PJ, Gordadze PR, Kuroda MI (2005) Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev 19: 2289–2294.PubMedCrossRefGoogle Scholar
  42. Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2054–2060.PubMedCrossRefGoogle Scholar
  43. Hochman B (1976) The fourth chromosome of Drosophila melanogaster. In Ashburner M, Novitski E, eds, The Genetics and Biology of Drosophila. New York: Academic Press, pp. 903–928Google Scholar
  44. Huynh KD, Lee JT (2001) Imprinted X inactivation in eutherians: a model of gametic execution and zygotic relaxation. Curr Opin Cell Biol 13: 690–697.PubMedCrossRefGoogle Scholar
  45. Jegalian K, Page DC (1998) A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394: 776–780.PubMedCrossRefGoogle Scholar
  46. Jin Y, Wang Y, Walker DL et al. (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4: 129–135.PubMedCrossRefGoogle Scholar
  47. Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149: 1005–1010.PubMedCrossRefGoogle Scholar
  48. Jones BK, Levorse J, Tilghman SM (1998) Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev 12: 2200–2297.PubMedGoogle Scholar
  49. Kelley RL, Kuroda MI (2003) The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the Male-Specific Lethal dosage compensation complex. Genetics 164: 565–574.PubMedGoogle Scholar
  50. Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81: 867–877.PubMedCrossRefGoogle Scholar
  51. Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98: 513–522.PubMedCrossRefGoogle Scholar
  52. Kotlikova IV, Demakova OV, Semeshin VF et al. (2006) The Drosophila dosage compensation complex binds to polytene chromosomes independently of developmental changes in transcription. Genetics 172: 963–974.PubMedCrossRefGoogle Scholar
  53. Krivshenko JD (1952) A cytogenetic study of the Y chromosome in Drosophila buscki. Genetics 37: 500–518.PubMedGoogle Scholar
  54. Krivshenko JD (1955) A cytogenetic study of the X chromosome of Drosophila busckii and its relation to phylogeny. Proc Natl Acad Sci USA 41: 1071–1079.PubMedCrossRefGoogle Scholar
  55. Krivshenko JD (1959) New evidence for the homology of the short euchromatic elements of the X and Y chromosomes of Drosophila busckii with the microchromosome of Drosophila melanogaster. Genetics 44: 1027–1040.PubMedGoogle Scholar
  56. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286: 964–967.PubMedCrossRefGoogle Scholar
  57. Larsson J, Chen JD, Rasheva V, Rasmuson-Lestander A, Pirrotta V (2001) Painting of fourth, a chromosome-specific protein in Drosophila. Proc Natl Acad Sci USA 98: 6273–6278.PubMedCrossRefGoogle Scholar
  58. Larsson J, Svensson MJ, Stenberg P, Makitalo M (2004) Painting of fourth in genus Drosophila suggests autosome-specific gene regulation. Proc Natl Acad Sci USA 101: 9728–9733.PubMedCrossRefGoogle Scholar
  59. Lee C-C, Hurwitz J (1993) Human RNA helicase A is homologous to the maleless protein of Drosophila. J Biol Chem 268: 16822–16830.PubMedGoogle Scholar
  60. Lee C-G, Reichman TW, Baik T, Mathews MB (2004) MLE functions as a transcriptional regulator of the roX2 gene. J Biol Chem 46: 47740–47745.CrossRefGoogle Scholar
  61. Legube G, McWeeney SK, Lercher MJ, Akhtar A (2006) X chromosome wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev 20: 871–883.PubMedCrossRefGoogle Scholar
  62. Lieb JD, de Solorzano CO, Rodriguez EG et al. (2000) The Caenorhabditis elegans dosage compensation machinery is recruited to X chromosome DNA attached to an autosome. Genetics 156: 1603–1621.PubMedGoogle Scholar
  63. Lindsley DL, Sandler L, Baker BS et al. (1972) Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71: 157–184.PubMedGoogle Scholar
  64. Locke J, McDermid H (1993) Analysis of Drosophila chromosome four by pulse field electrophoresis. Chromosoma 102: 718–723.PubMedCrossRefGoogle Scholar
  65. Lucchesi JC, Kelly WG, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39: 615–651.PubMedCrossRefGoogle Scholar
  66. Luikenhuis S, Wutz A, Jaenisch R (2001) Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol Cell Biol 21: 8512–8520.PubMedCrossRefGoogle Scholar
  67. Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI (1997) Drosophila male-specific lethal protein: structure/function analysis and dependence on MSL1 for chromosome association. Genetics 146: 1743–1753.Google Scholar
  68. Lyon MF (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133–137.PubMedCrossRefGoogle Scholar
  69. Marin I (2003) Evolution of chromatin remodelling complexes: comparative genomics reveals the ancient origin of ‘novel’ compensasome genes. J Mol Evol 56: 527–539.PubMedCrossRefGoogle Scholar
  70. Marin I, Franke A, Bashaw GJ, Baker BS (1996) The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383: 160–163.PubMedCrossRefGoogle Scholar
  71. Meller VH (2003) Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs. Mech Dev 120: 759–767.PubMedCrossRefGoogle Scholar
  72. Meller VH, Kuroda MI (2002) Sex and the single chromosome. Adv Genet 46: 1–24.PubMedCrossRefGoogle Scholar
  73. Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21: 1084–1091.PubMedCrossRefGoogle Scholar
  74. Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL (1997) roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88: 445–457.PubMedCrossRefGoogle Scholar
  75. Meller VH, Gordadze PR, Park Y et al. (2000) Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr Biol 10: 136–143.PubMedCrossRefGoogle Scholar
  76. Miklos GLG., Yamamoto M-T, Davies J, Pirrotta V (1988) Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and b-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci USA 85: 2051–2055.PubMedCrossRefGoogle Scholar
  77. Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211: 393–396.PubMedGoogle Scholar
  78. Muller HJ (1940) Bearings on the Drosophila work on systematics. In Huxley J, ed., The New Systematics. Oxford: Clarendon Press, pp. 185–268.Google Scholar
  79. Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38: 47–53.PubMedGoogle Scholar
  80. Nusinow DA, Panning B (2005) Recognition and modification of sex chromosomes. Curr Opin Genet Dev 15: 206–213.PubMedCrossRefGoogle Scholar
  81. Oh H, Bone JR, Kuroda MI (2004) Multiple classes of MSL binding sites target dosage compensation to the X chromosome of Drosophila. Curr Biol 14: 481–487.PubMedCrossRefGoogle Scholar
  82. O’Neill MJ (2005) The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet 14: R113–R120.PubMedCrossRefGoogle Scholar
  83. Pal Bhadra M, Bhadra U, Kundu J, Birchler JA (2005) Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 169: 2061–2074.CrossRefGoogle Scholar
  84. Papaceit M, Juan E (1998) Fate of dot chromosome genes in Drosophila willistoni and Scaptodrosophila lebanonensis determined by in situ hybridization. Chromosome Res 6: 49–54.PubMedCrossRefGoogle Scholar
  85. Park Y, Kelley RL, Oh H, Kuroda MI, Meller VH (2002) Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science 298: 1620–1623.PubMedCrossRefGoogle Scholar
  86. Pfeifer GP, Tanguay RL, Steigerwald SD, Riggs AD (1990) In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev 4: 1277–1287.PubMedGoogle Scholar
  87. Plath K, Fang J, Mlynarczyk-Evans SK et al. (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131–135.PubMedCrossRefGoogle Scholar
  88. Plath K, Talbot D, Hameer KM et al. (2004) Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol 167: 1025–1035.PubMedCrossRefGoogle Scholar
  89. Podemski L, Ferrer C, Locke J (2001) Whole arm inversion of chromosome 4 in Drosophila species. Chromosoma 110: 305–312.PubMedGoogle Scholar
  90. Qian S, Pirrotta V (1995) Dosage compensation of the Drosophila white gene requires both the X chromosome environment and multiple intragenic elements. Genetics 139: 733–744.PubMedGoogle Scholar
  91. Rattner BP, Meller VH (2004) Drosophila Male Specific Lethal 2 protein controls male-specific expression of the roX genes. Genetics 166: 1825–1832.PubMedCrossRefGoogle Scholar
  92. Rice WR (1996) Evolution of the Y sex chromosome in animals. Bioscience 46: 331–343.CrossRefGoogle Scholar
  93. Richter L, Bone JR, Kuroda MI (1996) RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1: 325–336.PubMedCrossRefGoogle Scholar
  94. Sandler L, Novitski E (1956) Evidence for genetic homology between chromosomes I and IV in Drosophila melanogaster, with a proposed explaination for the crowding effect in triploids. Genetics 41: 189–193.PubMedGoogle Scholar
  95. Sass GL, Pannuti A, Lucchesi JC (2003) Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling. Proc Natl Acad Sci USA 100: 8287–8291.PubMedCrossRefGoogle Scholar
  96. Silva J, Mak W, Zvetkova I et al. (2003) Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4: 481–495.PubMedCrossRefGoogle Scholar
  97. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415: 810–813.PubMedGoogle Scholar
  98. Smith ER, Pannuti A, Gu W et al. (2000) The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20: 312–318.PubMedCrossRefGoogle Scholar
  99. Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276: 31483–31486.PubMedCrossRefGoogle Scholar
  100. Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25: 9175–9188.PubMedCrossRefGoogle Scholar
  101. Steinmann M, Steinmann S (1998) Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda. a model for sex chromosome evolution. Genetica 102: 409–420.CrossRefGoogle Scholar
  102. Stenberg P, Pettersson F, Saura AO, Berglund A, Larsson J (2005) Sequence analysis of chromosome identity in three Drosophila species. BMC Bioinfomatics 6: 1–17.CrossRefGoogle Scholar
  103. Straub T, Gilfillan GD, Maier VK, Becker PB (2005) The Drosophila MSL complex activates the transcription of target genes. Genes Dev 19: 2284–2288.PubMedCrossRefGoogle Scholar
  104. Sun FL, Cuaycong MH, Craig CA, Wallrath LL, Locke J, Elgin SC (2000) The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci USA 97: 5340–5345.PubMedCrossRefGoogle Scholar
  105. Taipale M, Rea S, Richter K et al. (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25: 6798–6810.PubMedCrossRefGoogle Scholar
  106. Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21: 36–44.PubMedCrossRefGoogle Scholar
  107. Thakur N, Tiwari VK, Thomassin H et al. (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24: 7855–7862.PubMedCrossRefGoogle Scholar
  108. Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.PubMedCrossRefGoogle Scholar
  109. Verona RI, Mann MRW, Bartolomei MS (2003) Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 19: 237–259.PubMedCrossRefGoogle Scholar
  110. Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433–443.PubMedCrossRefGoogle Scholar
  111. White WM, Willard HF, Van Dyke DL, Wolff DJ (1998) The spreading of X inactivation into autosomal material of an X;autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. Am J Hum Genet 63: 20–28.PubMedCrossRefGoogle Scholar
  112. Zhang W, Deng H, Bao X et al. (2005) The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133: 229–235.PubMedCrossRefGoogle Scholar
  113. Zhou S, Yang Y, Scott MJ et al. (1995) Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J 14: 2884–2895.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Umeå Center for Molecular PathogenesisUmeå UniversityUmeåSweden
  2. 2.Department of Biological SciencesWayne State UniversityDetroitUSA

Personalised recommendations