Chromosome Research

, Volume 14, Issue 5, pp 587–594 | Cite as

Cytogenetics of a new cytotype of African Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G- banding and distribution of (TTAGGG) n telomeric sequences

  • Riccardo Castiglia
  • Silvia Garagna
  • Valeria Merico
  • Nicholas Oguge
  • Marco Corti


We present the results of a cytogenetic study on Mus (Nannomys) minutoides from Kenya by means of C- and G- banding and in-situ fluorescence hybridization (FISH) to localize the telomeric sequences. The karyotype is characterized by the occurrence of several Rb chromosomes Rb(1.X), Rb(1.Y). Rb(2.17), Rb(3.13), Rb(4.10), Rb(5.11), Rb(6.7), Rb(8.12), not previously described for this species. This finding suggests a high level of chromosomal diversification, which means it is possible to consider this cytotype as a new, well-differentiated, chromosomal lineage within the subgenus. The C-banding of the metaphases illustrated conspicuous blocks of centromeric heterochromatin at the paracentromeric regions of all telocentric chromosomes. Centromeric heterochromatin is not visible on all biarmed chromosomes. Following hybridization with telomeric probes, bright interstitial telomeric sequence (ITS) fluorescence signals are evident at the pericentromeric area of all Rb chromosomes, with the exception of Rb(2.17). Considering the localization of the C-positive heterochromatin and of the telomeric sequences, the events leading to the Kenyan cytotype from an all-telocentric condition probably included two steps: first, fusion without loss of heterochromatin and pericentromeric telomeric sequences; second, the reduction of the C-positive satellite DNA followed by the amplification of telomeric sequences in the C-negative paracentromeric region of Rb chromosomes. The presence of a single Rb(2.17) without ITS indicates possible variations of this mechanism.

Key words

chromosome evolution heterochromatin Rb fusion sex-autosome translocation telomere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aniskin VM, Lavrenchenko LA, Varshavskii AA, Milishnikov AN (1998) Karyotypes and cytogenetic differentiation of two African mouse species of the genus Mus (Rodentia, Muridae). Russ J Genet 34: 80–85.Google Scholar
  2. Ashley T (2002) X-autosome translocations, meiotic synapsis, chromosome evolution and speciation. Cytogenet Genome Res 99: 303–309.CrossRefGoogle Scholar
  3. Castiglia R, Gornung E, Corti M (2002) Cytogenetic analyses of chromosomal rearrangements in Mus minutoides/musculoides from North-West Zambia through mapping of the telomeric sequence (TTAGGG)n and banding techniques. Chromosome Res 10: 399–406.PubMedCrossRefGoogle Scholar
  4. Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2003) Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in Taterillus X (Rodentia, Gerbillinae). Cytogenet Genome Res 103: 94–103.PubMedCrossRefGoogle Scholar
  5. Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2004) Viability of X-autosome translocations in mammals: an epigenomic hypothesis from a rodent case-study. Chromosoma 113: 34–41.PubMedCrossRefGoogle Scholar
  6. Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13: 469–479.PubMedCrossRefGoogle Scholar
  7. Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103: 685–692.PubMedGoogle Scholar
  8. Garagna S, Ronchetti E, Mascheretti S et al. (1997) Non-telomeric chromosome localisation of (TTAGGG)n in the genus Eulemur. Chromosome Res 5: 487–491.PubMedCrossRefGoogle Scholar
  9. Hsu TC, Patton JL (1969) Bone marrow preparations for chromosome studies. In Benirschke K, ed., Comparative Mammalian Cytogenetics. Berlin: Springer-Verlag, pp. 454–460.Google Scholar
  10. Jaafar H, Gabriel-Robez O, Rumpler Y (1993) Chromosomal anomalies and disturbance of transcriptional activity at the pachytene stage of meiosis: relationship to male sterility. Cytogenet Cell Genet 64: 273–280.PubMedGoogle Scholar
  11. Jotterand-Bellomo M (1984) L’analyse cytogénétique de deux espéces de Muridae africains, Mus oubanguii et Mus minutoides/musculoides: polymorphisme chromosomique et é bauche d’une phylogénie. Cytogenet Cell Genet 38: 182–188.Google Scholar
  12. Jotterand-Bellomo M (1986) Le genre Mus africain, un exemple d’homogénèité caryotypique: étude cytogénétique de Mus minutoides/musculoides (Côte d’Ivoire) de M. setulosus (Republique Centrafricaine), et de M. mattheyi (Burkina Faso). Cytogenet Cell Genet 42: 99–104.Google Scholar
  13. King M (1993) Species Evolution. The role of the chromosomal change. Cambridge: Cambridge University Press.Google Scholar
  14. Lansdorp PM, Verwoerd NP, van de Rijke FM et al. (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5: 685–691.PubMedCrossRefGoogle Scholar
  15. Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64: 24–30.PubMedCrossRefGoogle Scholar
  16. Matthey R (1966) Le polymorphisme chromosommique des Mus africains du sous-genre Leggada. Reévision générale portant sur l’analyse de 213 individus. Rev Suisse Zool 73: 585–607.Google Scholar
  17. Matthey R (1970) L’éventail ‘Robertsonien’ chez les Mus (Leggada) Africains du groupe minutoides/musculoides. Rev Suisse Zool 77: 625–629.PubMedGoogle Scholar
  18. Metcalfe CJ, Eldridge MDB, Toder R, Johnston PG (1998) Mapping the distribution of the telomeric sequence (T2AG3) Macropodoidea (Marsupialia), by fluorescence in situ hybridization. I. The swamp wallaby, Wallabia bicolour. Chromosome Res 6: 603–610.PubMedCrossRefGoogle Scholar
  19. Meyne J, Baker RJ, Hobart HH et al. (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99: 3–10.PubMedCrossRefGoogle Scholar
  20. Musser GG, Carleton MD (2006) Superfamily Muroidea. In Wilson DE, Reeder DH, eds., Mammal Species of the World. A taxonomic and geographic reference. Washington, DC: Smithsonian Institution.Google Scholar
  21. Nanda I, Schneider-Rasp S, Winking H, Schmid M (1995) Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Res 3: 399–409.PubMedCrossRefGoogle Scholar
  22. Pagnozzi JM, Silva MJD, Yonenega-Yassuda Y (2000) Intraspecific variation in the distribution of interstitial telomeric (TTAGG)n sequences in Micoureus demerarae (Marsupialia; Didelphidae). Chromosome Res 8: 585–591.PubMedCrossRefGoogle Scholar
  23. Ratomponirina C, Viegas-Péquignot E, Dutrillax B, Petter F, Rumpler Y (1986) Synaptonemal complexes in Gerbillidae: probable role of intercalated heterochromatin in gonosome–autosome translocations. Cytogenet Cell Genet 43: 161–167.PubMedCrossRefGoogle Scholar
  24. Rogatcheva MB, Ono T, Sonta S, Oda S, Borodin PM (2000) Robertsonian metacentrics of the house musk shrew (Suncus murinus, Insectivora, Soricidae) lose the telomeric sequences in the centromeric area. Genes Genet Syst 75: 155–158.PubMedCrossRefGoogle Scholar
  25. Seabright MA (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.PubMedCrossRefGoogle Scholar
  26. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.PubMedCrossRefGoogle Scholar
  27. Veyrunes F, Catalan J, Sicard B et al. (2004) Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys (Murinae; Mus). Chromosome Res 12: 369–382.PubMedCrossRefGoogle Scholar
  28. Veyrunes F, Britton-Davidian J, Robinson TJ, Calvet E, Denys C, Chevret P (2005) Molecular phylogeny of the African pygmy mice, subgenus Nannomys (Rodentia, Murinae, Mus): implications for chromosomal evolution. Mol Phylogenet Evol 36: 358–369.PubMedCrossRefGoogle Scholar
  29. Viegas-Pequignot E, Benazzou T, Dutrillaux B, Petter F (1982) Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet Cell Genet 34: 158–167.PubMedGoogle Scholar
  30. Zhdanova NS, Karaisheva TV, Minina J et al. (2005) Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granarius. Chromosome Res 13: 617–625.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Riccardo Castiglia
    • 1
  • Silvia Garagna
    • 2
  • Valeria Merico
    • 2
  • Nicholas Oguge
    • 3
  • Marco Corti
    • 1
  1. 1.Dipartimento di Biologia Animale e dell’UomoUniversità di Roma ‘La Sapienza’RomaItaly
  2. 2.Dipartimento di Biologia AnimaleUniversita’ degli Studi di PaviaPaviaItaly
  3. 3.Samburu Conservation Research InitiativeEarthwatch InstituteNairobiKenya

Personalised recommendations