Skip to main content
Log in

Effect of flow history on combustion in a laminar boundary layer

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of numerical simulations of methane combustion in a laminar boundary layer on a porous plate with an impermeable initial section are presented. The analysis of results is based on comparisons of data with and without combustion, and also for different initial section lengths including the zero length. The flow history is demonstrated to exert a significant effect on heat transfer and friction in the boundary layer with injection without combustion, whereas the influence of the flow history in the case with combustion is smaller. The phenomenon experiencing the least effect of the flow history is heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Kays, Convective Heat and Mass Transfer, McGraw Hill, New York (1980).

    Google Scholar 

  2. V. M. K. Sastri and J. P. Hartnett, “Effect of an unheated solid starting length on skin friction and heat transfer in a transpired laminar boundary layer,” in: Progress in Heat and Mass Transfer, Vol. 2, Pergamon Press (1969), pp. 213–223.

  3. T. Hirano, K. Iwai, and Y. Kanno, “Measurement of the velocity distribution in the boundary layer over a flat plate with a diffusion flame,” Astron. Acta, 17, 811–818 (1972).

    Google Scholar 

  4. T. Hirano and Y. Kanno, “Aerodynamic and thermal structures of the laminar boundary layer over a flat plate with a diffusion flame,” in: Proc. 14th Symp. (Int.) Combustion (1973), pp. 391–398.

  5. S. Rouvreau, J. Torero, and P. Joulain, “Numerical evaluation of boundary layer assumptions for laminar diffusion flames in microgravity,” Combust. Theor. Model., 9, 137–158 (2005).

    Article  MATH  ADS  Google Scholar 

  6. S. Kikkawa and K. Yoshikawa, “Theoretical investigation of laminar boundary layer with combustion over a flat plate,” Int. J. Heat Mass Transfer, 16, 1215–1229 (1973).

    Article  Google Scholar 

  7. S. P. Batenko and V. I. Terekhov, “Effect of dynamic prehistory on aerodynamics of a laminar separated flow in a channel behind a rectangular backward-facing step,” J. Appl. Mech. Tech. Phys., 43, No. 6, 854–860 (2002).

    Article  Google Scholar 

  8. T. Ueda, A. Ooshima, N. Saito, and M. Mizomoto, “Aerodynamic structure of a laminar boundary layer diffusion flame over a horizontal flat plate (experimental analysis),” JSME Int. J, Ser. 2, 34, No. 4, 527–532 (1991).

    Google Scholar 

  9. U. M. Mizomoto, S. Ikai, and T. Kobayashi, “Velocity and temperature fluctuations in a flat plate boundary layer diffusion flame,” Combust. Sci. Technol., 27, Nos. 3-4, 133–142 (1982).

    Google Scholar 

  10. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York (1987).

    MATH  Google Scholar 

  11. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1997).

    Google Scholar 

  12. C. K. Westbrook and F. L. Dryer, “Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames,” Combust. Sci. and Technol., 27, 31–43 (1981).

    Article  Google Scholar 

  13. E. M. Sparrow and J. B. Star, “The transpiration-cooled flat plate with various thermal and velocity boundary conditions,” Int. J. Heat Mass Transfer, 9, 508–510 (1966).

    Article  Google Scholar 

  14. J. S. Ha, S. H. Shim, and H. D. Shin, “Boundary layer diffusion flame over a flat plate in the presence and absence of flow separation,” Combust. Sci. Technol., 75, 241–260 (1991).

    Article  Google Scholar 

  15. R. Ananth, P. A. Tatem, and C. C. Ndubizu, “A numerical model for the development of a boundary layer diffusion flame over a porous plate,” Naval Research Laboratory Memorandum Report No. NRL/MR/6183-01-8547 (2001).

  16. A. Ramachandra and B. N. Raghunandan, “On the velocity overshoot in a laminar boundary layer diffusion flame,” Combust. Sci. Technol., 33, 309–313 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Terekhov.

Additional information

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 6, pp. 3–11, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volchkov, É.P., Terekhov, V.V. & Terekhov, V.I. Effect of flow history on combustion in a laminar boundary layer. Combust Explos Shock Waves 46, 615–622 (2010). https://doi.org/10.1007/s10573-010-0082-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0082-9

Key words

Navigation