Effect of flow history on combustion in a laminar boundary layer

  • É. P. Volchkov
  • V. V. Terekhov
  • V. I. Terekhov


Results of numerical simulations of methane combustion in a laminar boundary layer on a porous plate with an impermeable initial section are presented. The analysis of results is based on comparisons of data with and without combustion, and also for different initial section lengths including the zero length. The flow history is demonstrated to exert a significant effect on heat transfer and friction in the boundary layer with injection without combustion, whereas the influence of the flow history in the case with combustion is smaller. The phenomenon experiencing the least effect of the flow history is heat transfer.

Key words

injection combustion laminar boundary layer heat transfer friction initial section 


  1. 1.
    W. M. Kays, Convective Heat and Mass Transfer, McGraw Hill, New York (1980).Google Scholar
  2. 2.
    V. M. K. Sastri and J. P. Hartnett, “Effect of an unheated solid starting length on skin friction and heat transfer in a transpired laminar boundary layer,” in: Progress in Heat and Mass Transfer, Vol. 2, Pergamon Press (1969), pp. 213–223.Google Scholar
  3. 3.
    T. Hirano, K. Iwai, and Y. Kanno, “Measurement of the velocity distribution in the boundary layer over a flat plate with a diffusion flame,” Astron. Acta, 17, 811–818 (1972).Google Scholar
  4. 4.
    T. Hirano and Y. Kanno, “Aerodynamic and thermal structures of the laminar boundary layer over a flat plate with a diffusion flame,” in: Proc. 14th Symp. (Int.) Combustion (1973), pp. 391–398.Google Scholar
  5. 5.
    S. Rouvreau, J. Torero, and P. Joulain, “Numerical evaluation of boundary layer assumptions for laminar diffusion flames in microgravity,” Combust. Theor. Model., 9, 137–158 (2005).CrossRefMATHADSGoogle Scholar
  6. 6.
    S. Kikkawa and K. Yoshikawa, “Theoretical investigation of laminar boundary layer with combustion over a flat plate,” Int. J. Heat Mass Transfer, 16, 1215–1229 (1973).CrossRefGoogle Scholar
  7. 7.
    S. P. Batenko and V. I. Terekhov, “Effect of dynamic prehistory on aerodynamics of a laminar separated flow in a channel behind a rectangular backward-facing step,” J. Appl. Mech. Tech. Phys., 43, No. 6, 854–860 (2002).CrossRefGoogle Scholar
  8. 8.
    T. Ueda, A. Ooshima, N. Saito, and M. Mizomoto, “Aerodynamic structure of a laminar boundary layer diffusion flame over a horizontal flat plate (experimental analysis),” JSME Int. J, Ser. 2, 34, No. 4, 527–532 (1991).Google Scholar
  9. 9.
    U. M. Mizomoto, S. Ikai, and T. Kobayashi, “Velocity and temperature fluctuations in a flat plate boundary layer diffusion flame,” Combust. Sci. Technol., 27, Nos. 3-4, 133–142 (1982).Google Scholar
  10. 10.
    E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York (1987).MATHGoogle Scholar
  11. 11.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1997).Google Scholar
  12. 12.
    C. K. Westbrook and F. L. Dryer, “Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames,” Combust. Sci. and Technol., 27, 31–43 (1981).CrossRefGoogle Scholar
  13. 13.
    E. M. Sparrow and J. B. Star, “The transpiration-cooled flat plate with various thermal and velocity boundary conditions,” Int. J. Heat Mass Transfer, 9, 508–510 (1966).CrossRefGoogle Scholar
  14. 14.
    J. S. Ha, S. H. Shim, and H. D. Shin, “Boundary layer diffusion flame over a flat plate in the presence and absence of flow separation,” Combust. Sci. Technol., 75, 241–260 (1991).CrossRefGoogle Scholar
  15. 15.
    R. Ananth, P. A. Tatem, and C. C. Ndubizu, “A numerical model for the development of a boundary layer diffusion flame over a porous plate,” Naval Research Laboratory Memorandum Report No. NRL/MR/6183-01-8547 (2001).Google Scholar
  16. 16.
    A. Ramachandra and B. N. Raghunandan, “On the velocity overshoot in a laminar boundary layer diffusion flame,” Combust. Sci. Technol., 33, 309–313 (1983).CrossRefADSGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • É. P. Volchkov
    • 1
  • V. V. Terekhov
    • 1
  • V. I. Terekhov
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations