Advertisement

Combustion, Explosion, and Shock Waves

, Volume 46, Issue 2, pp 132–139 | Cite as

Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame

  • E. Pousse
  • P. A. Glaude
  • R. Fournet
  • F. Battin-Leclerc
Article

Abstract

In order to better understand the chemistry involved during the combustion of diesel fuel components, the structure of a laminar lean premixed methane flame doped with indane has been investigated. This flame contains 7.1% (molar) of methane, 36.8% of oxygen, and 0.90% of indane, corresponding to an equivalence ratio of 0.74 and a C9H10/CH4 ratio of 12.75%, with argon used as a dilutant. The flame has been stabilized on a burner at a pressure of 6.7 kPa, with the gas velocity at the burner exit equal to 49.2 cm/sec at 333 K. Quantified species include usual methane combustion products C0–C2, but also eleven C3–C5 hydrocarbons and three C1–C3 oxygenated compounds, as well as 17 aromatic products, namely benzene, toluene, phenylacetylene, styrene, ethylbenzene, xylenes, trimethylbenzenes, ethyltoluenes, indene, methylindane, methylindene, naphthalene, phenol, benzaldehyde, and benzofuran. The temperature has been measured by a PtRh(6%)-PtRh(30%) thermocouple settled inside the enclosure: from 800 K close to the burner up to 2000 K in the burned gases.

Key words

methane/oxygen/indane mixture laminar flame composition of combustion products 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Guibet, Fuels and Engines, Publications de l’Institut Français du Pétrole, Editions Technip, Paris (1999).Google Scholar
  2. 2.
    F. Battin-Leclerc, “Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates,” Prog. Energ. Combust. Sci., 63, No. 4, 440–498 (2008).CrossRefGoogle Scholar
  3. 3.
    T. A. Litzinger, K. Brezinsky, and I. Glassman, “The oxidation of ethylbenzene near 1060 K,” Combust. Flame, 63, 251–267 (1986).CrossRefGoogle Scholar
  4. 4.
    T. A. Litzinger, K. Brezinsky, and I. Glassman, “Reactions of n-propylbenzene during gas phase oxidation,” Combust. Sci. Techol., 50, 117–133 (1986).CrossRefGoogle Scholar
  5. 5.
    T. A. Litzinger, K. Brezinsky, and I. Glassman, “Gas-phase oxidation of isopropylbenzene at high temperature,” J. Phys. Chem., 90, 508–513 (1986).CrossRefGoogle Scholar
  6. 6.
    P. Dagaut, A. Ristori, A. El Bakali, and M. Cathonnet, “Experimental and kinetic modeling study of the oxidation of n-propylbenzene,” Fuel, 81, 173–184 (2002).CrossRefGoogle Scholar
  7. 7.
    A. Roubaud, R. Minetti, and L. R. Sochet, “Oxidation and combustion of low alkylbenzenes at high pressure: comparative reactivity and auto-ignition,” Combust. Flame, 121, 535–541 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Roubaud, O. Lemaire, R. Minetti, and L. R. Sochet, “High pressure auto-ignition and oxidation mechanism of o-xylene, o-ethytoluene, and n-butylbenzene between 600 and 900 K,” Combust. Flame, 123, 561–571 (2000).CrossRefGoogle Scholar
  9. 9.
    P. Dagaut, A. Ristori, G. Pengloan, and M. Cathonnet, “Kinetic effect of dimethoxymethane on the oxidation of indane,” Energ. Fuels, 15, 372–376 (2001).CrossRefGoogle Scholar
  10. 10.
    F. Buda, R. Bounaceur, V. Warth, P. A. Glaude, R. Fournet, and F. Battin-Leclerc, “Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K,” Combust. Flame, 142, 170–186 (2005).CrossRefGoogle Scholar
  11. 11.
    I. Da Costa, R. Fournet, F. Billaud, and F. Battin-Leclerc, “Experimental and modelling study of the oxidation of benzene,” Int. J. Chem. Kin, 35, 503–524 (2003).CrossRefGoogle Scholar
  12. 12.
    R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, and F. Battin-Leclerc, “Experimental and modeling study of the oxidation of toluene,” Int. J. Chem. Kin., 37, 25–49 (2005).CrossRefGoogle Scholar
  13. 13.
    H. A. Gueniche, P. A. Glaude, G. Dayma, R. Fournet, and F. Battin-Leclerc, “Rich methane premixed laminar flames doped with light unsaturated hydrocarbons. Pt I: Allene and propyne,” Combust. Flame, 146, 620–634 (2006).CrossRefGoogle Scholar
  14. 14.
    H. A. Gueniche, P. A. Glaude, R. Fournet, and F. Battin-Leclerc, “Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Part II: 1,3-butadiene,” Combust. Flame, 151, 245–261 (2007).CrossRefGoogle Scholar
  15. 15.
    H. A. Gueniche, P. A. Glaude, R. Fournet, and F. Battin-Leclerc, “Rich methane premixed laminar flames doped by light unsaturated hydrocarbons. Part III: Cyclopentene,” Combust. Flame, 152, 245–261 (2008).CrossRefGoogle Scholar
  16. 16.
    J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame, 14, 279–282 (1970).CrossRefGoogle Scholar
  17. 17.
    U. Bonne, T. Grewer, and H. W. Wagner, “Messungen in der Reaktionszone von Wasserstoff-Sauerstoff- und Methan-Sauerstoff-Flammen,” Z. Phys. Chem., 26, S. 93–110 (1960).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • E. Pousse
    • 1
  • P. A. Glaude
    • 1
  • R. Fournet
    • 1
  • F. Battin-Leclerc
    • 1
  1. 1.Departement de Chimie-Physique des ReactionsNancy UniversityNancyFrance

Personalised recommendations