Combustion, Explosion, and Shock Waves

, Volume 46, Issue 1, pp 70–73 | Cite as

Properties of porous cast charges based on mixtures of ammonium nitrate and carbamide

  • G. D. Kozak
  • A. V. Starshinov
  • O. B. Litovka
  • S. V. Kazakova


The explosive and physicochemical properties of porous mixtures based on ammonium nitrate, carbamide, and aluminum powder are considered. A melting curve for the ammonium nitrate/carbamide system is plotted using differential scanning calorimetry. The critical detonation diameter is obtained for a charge density of 0.6–0.7 g/cm3. The dependence of the charge density on the degree of filling of the mold with the melt is determined. Detonation velocity is measured for various densities. An explanation of the difference between the experimental and calculated values is proposed.

Key words

eutectic mixture ammonium nitrate carbamide vacuum formation detonation velocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. Kondrikov, G. D. Kozak, and A. V. Starshinov, “Critical conditions of low and high velocity regimes in liquid nitrocompounds,” in: APPer Summaries 11th Int. Detonation Symposium, Snowmass (1998), pp. 231–234.Google Scholar
  2. 2.
    G. D. Kozak, B. N. Kondrikov, and A. I. Sumin, “Dependence of detonation velocity on charge density for foamed alumotol (Al/TNT) and TNT mixtures,” Combust., Expl., Shock Waves, 34, No. 4, 448–452 (1998).CrossRefGoogle Scholar
  3. 3.
    V. M. Olevskii (ed.), Production of Ammonium Nitrate in High-Output Aggregates [in Russian], Khimiya, Moscow (1990).Google Scholar
  4. 4.
    A. I. Sumin, V. N. Gamezo, B. N. Kondrikov, V. M. Raikova, “Shock and detonation general kinetics and thermodynamics in reactive systems computer package,” in: Trans. of the 11th Int. Detonation Symp., Ampersand (2000), pp. 30–35.Google Scholar
  5. 5.
    B. N. Kondrikov, V. É. Annikov, and G. D. Kozak, “A generalized dependence of the critical detonation diameter of porous substances on the density,” Combust., Expl., Shock Waves, 33, No. 2, 219–339 (1997).CrossRefGoogle Scholar
  6. 6.
    G. D. Kozak, V. M. Raikova, and E. I. Aleshkina, Critical Conditions of Propagation and Photorecording of Detonation Processes [in Russian], Mendeleev Russian Chem.-Technol. Univ., Moscow (2005).Google Scholar
  7. 7.
    B. N. Kondrikov and V. M. Raikov, “Detonation limits of explosive solutions,” Combust., Expl., Shock Waves, 13, No. 1, 46–51 (1977).CrossRefGoogle Scholar
  8. 8.
    E. A. Likholatov, “Calculation of the kinetic characteristics of chemical transformation of organic liquids in a detonation wave,” Candidate Dissertation in Tech. Sci., Moscow (2004).Google Scholar
  9. 9.
    V. E. Annikov, B. N. Kondrikov, N. I. Akinin, and G. D. Kozak, Properties and Safety of Water-Filled Explosive Systems [in Russian], Mendeleev Russian Chem.-Technol. Univ., Moscow (2006).Google Scholar
  10. 10.
    V. E. Annikov, B. N. Kondrikov, N. I. Akinin, and G. D. Kozak, “Detonation aluminum-containing water-filled explosives,” in: Issues of the Theory of Explosives, Proc. Mendeleev Moscow Chemical-Technological Institute, No. 83 (1974), pp. 79–88.Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • G. D. Kozak
    • 1
  • A. V. Starshinov
    • 1
  • O. B. Litovka
    • 1
  • S. V. Kazakova
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations