Advertisement

Combustion, Explosion, and Shock Waves

, Volume 46, Issue 1, pp 30–35 | Cite as

Critical regimes of volume ignition of mechanically activated Ti-C-Ni mixtures

  • V. Yu. Filimonov
  • M. A. Korchagin
  • A. V. Afanas’ev
  • A. A. Sitnikov
  • V. I. Yakovlev
  • S. V. Terekhin
  • I. V. Baryshnikov
  • N. Z. Lyakhov
Article

Abstract

Conditions of a static thermal explosion in mechanically activated Ti-C-Ni mixtures are studied. Mechanical activation of the mixtures in a planetary ball mill during 30–180 sec is found to reduce the reaction-initiation temperature by 1000–600°C, as compared with traditional self-propagating high-temperature synthesis. Results of x-ray diffraction analysis and electron microscopy of activated mixtures and thermal explosion products are described. The result of the synthesis is a TiC compound in a solid nickel matrix.

Key words

thermal explosion SHS mechanical activation composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Gotman, M. J. Koczak, and E. Shtessel, “Fabrication of Al matrix in situ composites via self-propagating synthesis,” J. Mater. Sci. Eng. A, 187, No. 2, 189–199 (1994).CrossRefGoogle Scholar
  2. 2.
    Q. Xu, X. Zhang, J. Han, et al., “Combustion synthesis and densification of titanium diboride-copper matrix composite,” Mater. Lett., 57, 4439–4444 (2003).CrossRefGoogle Scholar
  3. 3.
    H. C. Yi, T. C. Woodger, J. J. Moore, and J. Y. Guigne, “Combustion synthesis of HfB2-Al composites,” Metall. Mater. Trans. B, 29, 877–887 (1998).CrossRefGoogle Scholar
  4. 4.
    X. Zhang, X. He, J. Han, et al., “Combustion synthesis and densification of large-scale TiC-xNi cermets,” Mater. Lett., 56, 183–187 (2002).Google Scholar
  5. 5.
    Z. Y. Fu, H. Wang, W. M. Wang, and R. Z. Yuan, “Composites fabricated by self-propagating high-temperature synthesis,” J. Mater. Process. Technol., 137, 30–34 (2003).CrossRefGoogle Scholar
  6. 6.
    A. N. Pityulin, “Forced compaction in SHS processes,” in: Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Territoriya, Chernogolovka (2001), pp. 333–353.Google Scholar
  7. 7.
    A. S. Rogachev and V. I. Ponomarev, “Phase and structure formation in SHS processes,” ibid., pp. 94–121.Google Scholar
  8. 8.
    A. E. Sychev and A. G. Merzhanov, “Self-propagating high-temperature synthesis of nanomaterials,” Usp. Khim., 73, No. 2, 157–170 (2004).Google Scholar
  9. 9.
    A. S. Rogachev, Yu. A. Galchenko, Z. G. Aslamazashvili, et al., “Microprobe study of composite materials obtained during combustion of Ti, Cr, and C powders and one of Fe-group metals,” Izv. Akad. Nauk SSSR, Neorg. Mater., 22, No. 11, 1842–1844 (1986).Google Scholar
  10. 10.
    A. S. Rogachev, V. M. Shkiro, I. D. Chausskaya, and M. V. Shvetsov, “Gasless combustion in the system titanium-carbon-nickel,” Combust., Expl., Shock Waves, 24, No. 6, 720–725 (1988).CrossRefGoogle Scholar
  11. 11.
    Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Territoriya, Chernogolovka (2001).Google Scholar
  12. 12.
    S. G. Vanchenko, Yu. M. Grigor’ev, and A. G. Merzhanov, “Investigation of the mechanism of the ignition and combustion of the systems Ti+C and Zr+C by an electrothermographic method,” Combust., Expl., Shock Waves, 12, No. 5, 606–611 (1976).CrossRefGoogle Scholar
  13. 13.
    V. A. Knyazik, A. G. Merzhanov, V. B. Solomonov, and A. S. Shteinberg, “Macrokinetics of high-temperature titanium interaction with carbon under electrothermal explosion conditions,” Combust., Expl., Shock Waves, 21, No. 3, 333–336 (1985).CrossRefGoogle Scholar
  14. 14.
    A. G. Merzhanov, A. S. Rogachev, A. S. Mukas’yan, and B. M. Khusid, “Macrokinetics of structural transformation during the gasless combustion of a titanium and carbon powder mixture,” Combust. Expl. Shock Waves, 26, No. 1, 92–101 (1990).CrossRefGoogle Scholar
  15. 15.
    A. G. Merzhanov, Solid-Flame Combustion [in Russian], ISMAN, Chernogolovka (2000).Google Scholar
  16. 16.
    M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition,” Combust., Expl., Shock Waves, 39, No. 1, 43–50 (2003).CrossRefGoogle Scholar
  17. 17.
    M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid-state combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product composition,” Combust., Expl., Shock Waves, 39, No. 1, 51–58 (2003).CrossRefGoogle Scholar
  18. 18.
    M. A. Korchagin and N. Z. Lyakhov, “Self-propagating high-temperature synthesis in mechanically activated compositions,” Khim. Fiz., 27, No. 1, 73–78 (2008).Google Scholar
  19. 19.
    A. G. Knyazeva and A. A. Chashchina, “Numerical study of the problem of thermal ignition of a thick-walled container,” Combust., Expl., Shock Waves, 40, No. 4, 432–437 (2004).CrossRefGoogle Scholar
  20. 20.
    E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, USSR Inventor’s Certificate No. 975068, “Planetary mill,” Byul. Izobr., No. 43 (1982).Google Scholar
  21. 21.
    V. Yu. Filimonov, V. V. Evstigneev, and A. V. Afanas’ev, “Thermal explosion in Ti + 3Al mixture: Mechanism of phase formation,” Int. J. SHS, 17, No. 2, 101–105 (2008).Google Scholar
  22. 22.
    V. Yu. Filimonov, E. V. Smirnov, A. V. Afanas’ev, et al., “Investigation of specific features of static thermal explosion evolution with the regular regime method by an example of synthesizing the TiAl3 intermetallic compound,” Perspekt. Mater., No. 3, 86–91 (2008).Google Scholar
  23. 23.
    M. A. Bolshanina and V. E. Panin, “Latent energy of deformation,” in: Research in Solid-State Physics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1957), pp. 193–233.Google Scholar
  24. 24.
    D. McLean, Mechanical Properties of Metals, John Wiley and Sons, New York-London (1962).Google Scholar
  25. 25.
    J. Wong, E. M. Larson, J. B. Holt, P. A. Waide, et al., “Time-resolved X-ray diffraction study of solid combustion reactions,” Science, 249, 1406–1409 (1990).CrossRefADSGoogle Scholar
  26. 26.
    E. A. Levashov, V. V. Kurbatkina, and K. V. Kolesnichenko, “Specific features of the influence of preliminary mechanical activation on the reactivity of titanium-based SHS mixtures,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurgiya, No. 6, 61–67 (2000).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  • V. Yu. Filimonov
    • 1
  • M. A. Korchagin
    • 2
  • A. V. Afanas’ev
    • 1
  • A. A. Sitnikov
    • 1
  • V. I. Yakovlev
    • 1
  • S. V. Terekhin
    • 1
  • I. V. Baryshnikov
    • 1
  • N. Z. Lyakhov
    • 2
  1. 1.Polzunov Altai State Technical UniversityBarnaulRussia
  2. 2.Institute of Solid State Chemistry and Mechanochemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations