Skip to main content
Log in

Critical regimes of volume ignition of mechanically activated Ti-C-Ni mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Conditions of a static thermal explosion in mechanically activated Ti-C-Ni mixtures are studied. Mechanical activation of the mixtures in a planetary ball mill during 30–180 sec is found to reduce the reaction-initiation temperature by 1000–600°C, as compared with traditional self-propagating high-temperature synthesis. Results of x-ray diffraction analysis and electron microscopy of activated mixtures and thermal explosion products are described. The result of the synthesis is a TiC compound in a solid nickel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Gotman, M. J. Koczak, and E. Shtessel, “Fabrication of Al matrix in situ composites via self-propagating synthesis,” J. Mater. Sci. Eng. A, 187, No. 2, 189–199 (1994).

    Article  Google Scholar 

  2. Q. Xu, X. Zhang, J. Han, et al., “Combustion synthesis and densification of titanium diboride-copper matrix composite,” Mater. Lett., 57, 4439–4444 (2003).

    Article  Google Scholar 

  3. H. C. Yi, T. C. Woodger, J. J. Moore, and J. Y. Guigne, “Combustion synthesis of HfB2-Al composites,” Metall. Mater. Trans. B, 29, 877–887 (1998).

    Article  Google Scholar 

  4. X. Zhang, X. He, J. Han, et al., “Combustion synthesis and densification of large-scale TiC-xNi cermets,” Mater. Lett., 56, 183–187 (2002).

    Google Scholar 

  5. Z. Y. Fu, H. Wang, W. M. Wang, and R. Z. Yuan, “Composites fabricated by self-propagating high-temperature synthesis,” J. Mater. Process. Technol., 137, 30–34 (2003).

    Article  Google Scholar 

  6. A. N. Pityulin, “Forced compaction in SHS processes,” in: Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Territoriya, Chernogolovka (2001), pp. 333–353.

  7. A. S. Rogachev and V. I. Ponomarev, “Phase and structure formation in SHS processes,” ibid., pp. 94–121.

  8. A. E. Sychev and A. G. Merzhanov, “Self-propagating high-temperature synthesis of nanomaterials,” Usp. Khim., 73, No. 2, 157–170 (2004).

    Google Scholar 

  9. A. S. Rogachev, Yu. A. Galchenko, Z. G. Aslamazashvili, et al., “Microprobe study of composite materials obtained during combustion of Ti, Cr, and C powders and one of Fe-group metals,” Izv. Akad. Nauk SSSR, Neorg. Mater., 22, No. 11, 1842–1844 (1986).

    Google Scholar 

  10. A. S. Rogachev, V. M. Shkiro, I. D. Chausskaya, and M. V. Shvetsov, “Gasless combustion in the system titanium-carbon-nickel,” Combust., Expl., Shock Waves, 24, No. 6, 720–725 (1988).

    Article  Google Scholar 

  11. Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Territoriya, Chernogolovka (2001).

  12. S. G. Vanchenko, Yu. M. Grigor’ev, and A. G. Merzhanov, “Investigation of the mechanism of the ignition and combustion of the systems Ti+C and Zr+C by an electrothermographic method,” Combust., Expl., Shock Waves, 12, No. 5, 606–611 (1976).

    Article  Google Scholar 

  13. V. A. Knyazik, A. G. Merzhanov, V. B. Solomonov, and A. S. Shteinberg, “Macrokinetics of high-temperature titanium interaction with carbon under electrothermal explosion conditions,” Combust., Expl., Shock Waves, 21, No. 3, 333–336 (1985).

    Article  Google Scholar 

  14. A. G. Merzhanov, A. S. Rogachev, A. S. Mukas’yan, and B. M. Khusid, “Macrokinetics of structural transformation during the gasless combustion of a titanium and carbon powder mixture,” Combust. Expl. Shock Waves, 26, No. 1, 92–101 (1990).

    Article  Google Scholar 

  15. A. G. Merzhanov, Solid-Flame Combustion [in Russian], ISMAN, Chernogolovka (2000).

    Google Scholar 

  16. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition,” Combust., Expl., Shock Waves, 39, No. 1, 43–50 (2003).

    Article  Google Scholar 

  17. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid-state combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product composition,” Combust., Expl., Shock Waves, 39, No. 1, 51–58 (2003).

    Article  Google Scholar 

  18. M. A. Korchagin and N. Z. Lyakhov, “Self-propagating high-temperature synthesis in mechanically activated compositions,” Khim. Fiz., 27, No. 1, 73–78 (2008).

    Google Scholar 

  19. A. G. Knyazeva and A. A. Chashchina, “Numerical study of the problem of thermal ignition of a thick-walled container,” Combust., Expl., Shock Waves, 40, No. 4, 432–437 (2004).

    Article  Google Scholar 

  20. E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, USSR Inventor’s Certificate No. 975068, “Planetary mill,” Byul. Izobr., No. 43 (1982).

  21. V. Yu. Filimonov, V. V. Evstigneev, and A. V. Afanas’ev, “Thermal explosion in Ti + 3Al mixture: Mechanism of phase formation,” Int. J. SHS, 17, No. 2, 101–105 (2008).

    Google Scholar 

  22. V. Yu. Filimonov, E. V. Smirnov, A. V. Afanas’ev, et al., “Investigation of specific features of static thermal explosion evolution with the regular regime method by an example of synthesizing the TiAl3 intermetallic compound,” Perspekt. Mater., No. 3, 86–91 (2008).

  23. M. A. Bolshanina and V. E. Panin, “Latent energy of deformation,” in: Research in Solid-State Physics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1957), pp. 193–233.

    Google Scholar 

  24. D. McLean, Mechanical Properties of Metals, John Wiley and Sons, New York-London (1962).

    Google Scholar 

  25. J. Wong, E. M. Larson, J. B. Holt, P. A. Waide, et al., “Time-resolved X-ray diffraction study of solid combustion reactions,” Science, 249, 1406–1409 (1990).

    Article  ADS  Google Scholar 

  26. E. A. Levashov, V. V. Kurbatkina, and K. V. Kolesnichenko, “Specific features of the influence of preliminary mechanical activation on the reactivity of titanium-based SHS mixtures,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurgiya, No. 6, 61–67 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Filimonov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 1, pp. 36–42, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filimonov, V.Y., Korchagin, M.A., Afanas’ev, A.V. et al. Critical regimes of volume ignition of mechanically activated Ti-C-Ni mixtures. Combust Explos Shock Waves 46, 30–35 (2010). https://doi.org/10.1007/s10573-010-0005-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0005-9

Key words

Navigation