Modeling of combustion of a magnesium particle (Stefan Problem)



An adjoint distributed mathematical model is proposed to describe the ignition and combustion of a magnesium particle with allowance for the gas area surrounding the particle. The combustion process is modeled within the framework of the single-phase Stefan problem. Verification of the model on the basis of available experimental values of ignition and combustion times under various conditions is performed.

Key words

ignition combustion heterogeneous chemical reaction mathematical modeling free boundary 


  1. 1.
    A. V. Fedorov, V. M. Fomin, and Yu. A. Gosteev, Dynamics and Ignition of Gas Suspensions [in Russian], Novosibirsk State Technical University, Novosibirsk (2006).Google Scholar
  2. 2.
    A. V. Fedorov and A. V. Shul’gin, “Conjugate mathematical model of ignition of magnesium samples,” Combust., Expl., Shock Waves, 42, No. 3, 295–301 (2006).CrossRefGoogle Scholar
  3. 3.
    V. N. Popov, A. V. Fedorov, and A. V. Shul’gin, “Numerical simulation of ignition of a magnesium particle in a nonuniform thermal field,” Mat. Model., 19, No. 6, 109–117 (2007).MATHGoogle Scholar
  4. 4.
    A. V. Fedorov and A. V. Shul’gin, “Ignition and combustion of magnesium particles in a nonuniform magnetic field,” Combust., Expl., Shock Waves, 45, No. 2, 151–159 (2009).CrossRefGoogle Scholar
  5. 5.
    M. W. Beckstead, “Correlating aluminum burning times,” Combust., Expl., Shock Waves, 41, No. 5, 533–546 (2005).CrossRefGoogle Scholar
  6. 6.
    E. I. Gusachenko, L. N. Stesik, V. P. Fursov, and V. I. Shevtsov, “Investigation of the condensed combustion products of magnesium powders. I. Dependence on pressure,” Combust., Expl., Shock Waves, 10, No. 4, 476–482 (1974)CrossRefGoogle Scholar
  7. 7.
    V. I. Shevtsov, V. P. Fursov, and L. N. Stesik, “Mechanism for combustion of isolated magnesium particles,” Combust., Expl., Shock Waves, 12, No. 6, 758–762 (1976).CrossRefGoogle Scholar
  8. 8.
    U. I. Gol’dshleger and S. D. Amosov, “Combustion modes and mechanisms of high-temperature oxidation of magnesium in oxygen,” Combust., Expl., Shock Waves, 40, No. 3, 275–284 (2004).CrossRefGoogle Scholar
  9. 9.
    V. I. Vasil’ev, A. M. Maksimov, E. E. Petrov, and G. G. Tsypkin, Heat and Mass Transfer in Freezing and Thawing Soils [in Russian], Nauka, Moscow (1996).Google Scholar
  10. 10.
    V. P. Prachukho, E. S. Ozerov, and A. A. Yurinov, “Burning of magnesium particles in water vapor,” Combust., Expl., Shock Waves, 7, No. 2, 195–198 (1971).CrossRefGoogle Scholar
  11. 11.
    M. E. Derevyaga, L. N. Stesik, and É. A. Fedorin, “Critical conditions for the ignition of magnesium,” Combust., Expl., Shock Waves, 14, No. 6, 731–734 (1978).CrossRefGoogle Scholar
  12. 12.
    M. E. Derevyaga, L. N. Stesik, and É. A. Fedorin, “Magnesium combustion regimes,” Combust., Expl., Shock Waves, 14, No. 5, 559–563 (1978).Google Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations