Combustion, Explosion, and Shock Waves

, Volume 45, Issue 5, pp 618–626 | Cite as

Investigation of low detonation velocity emulsion explosives



Emulsion explosives (EEs) with detonation velocity up to 2–3 km/sec are considered. The compositions contain a large amount of hollow glass microspheres. Examples are given of the use of low detonation velocity EEs to clad metal plates with foils up to 0.1 mm thick and to weld a small-diameter tube to a steel collar in a parallel explosive welding arrangement.

Key words

low-velocity emulsion explosive explosive welding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Matsuzawa, T. Murakado, H. Aimoto, S. Kitao, and N. Yoshida, “Method for explosive cladding,” US Patent No. 4844321, April 07, 1989.Google Scholar
  2. 2.
    A. Masusi, S. Kubota, et al., “Impact welding for urgent steel pipe repairs by emulsion explosives,” in: Proc. 22nd Int. Symp. on Shock Waves, Vol. 1, London (2000), pp. 565–570.Google Scholar
  3. 3.
    A. A. Deribas, Physics of Hardening and Explosive Welding [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  4. 4.
    B. Crossland and P. E. G. Williams, “An experimental investigation of velocity imparted to tube by an internal explosive charge,” in: 4th Int. Conf. of the Center for High Energy Forming, Vail (1973), pp. 7.3.0–7.3.18.Google Scholar
  5. 5.
    J. Němeček and F. Nykl, “Determining the parameters and effect of explosion of plane HE charges detonating in a closed cylindrical chamber,” in: Proc. 3rd Int. Symp. Explosive Working of Metals, Mariánská Lászně, Vol. 2 (1976), pp. 495–510.Google Scholar
  6. 6.
    M. Meinel, M. Schwalbe, and H. Wolf, “Erfarungen beim Explosivplattieren mit Pulverformigen Ammonsalpeter Gesteinsprengstoffen,” ibid, Vol. 5, pp. 524–535.Google Scholar
  7. 7.
    Hardening and Cladding Metals, Explosia a.s., Pardubice-Semtín, Czech Republic. list hardening.pdf.
  8. 8.
    Boostering and Detonation, Mondial Defence Systems Ltd, UK.
  9. 9.
    A. Maranda and S. Cudzilo, “Explosive mixtures detonating at low velocity,” Propellants, Explosives, Pyrotechnics, 26, 165–167 (2001).CrossRefGoogle Scholar
  10. 10.
    K. K. Shvedov, A. I. Aniskin, A. N. Il’in, and A. N. Dremin, “Detonation of highly diluted porous explosives I. Effect of inert additive on detonation parameters,” Combust. Expl. Shock Waves, 16, No. 3, 324–331 (1980).CrossRefGoogle Scholar
  11. 11.
    V. A. Simonov, Areas of Explosive Welding. Main Parameters and Criteria [in Russian], Lavrent’ev Institute of Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1995), p. 61.Google Scholar
  12. 12.
    A. D. Babkov, Yu. P. Besshaposhnikov, V. E. Kozhevnikov, V. I. Chernykhin, S. V. Kuz’min, and V. I. Lysak, “Complex study of the main characteristics of mixtures of 6ZhV ammonite with quartz sand for explosion welding,” Fiz. Goreniya Vzryva, No. 2, 107–108 (1992).Google Scholar
  13. 13.
    V. M. Ogolikhin and I. V. Yakovlev, “Using igdanite for explosive welding in explosive chambers,” Izv. Volgograd. Politekh. Gos. Univ., No. 3(41), 105–110 (2008).Google Scholar
  14. 14.
    Yu. P. Besshaposhnikov, V. E. Kozhevnikov, A. B. Stepanov, and V. I. Chernukhin, “Characteristics of ammonium nitrate and its mixtures with quartz sand for explosive welding,” Fiz. Goreniya Vzryva, 28, No. 5, 131–132 (1992).Google Scholar
  15. 15.
    Wang Xuguang, Emulsion Explosives, Metallurgical Industry Press, Beijing (1994).Google Scholar
  16. 16.
    M. Yoshida, M. Iida, K. Tanaka, S. Fujiwara, M. Kusakabe, and K. Shiino, “Detonation behavior of emulsion explosives containing glass microballoons,” in: Proc. 8th Symp. Int. on Detonation (1985), pp. 171–177.Google Scholar
  17. 17.
    O. E. Petel, D. Mack, A. J. Higgins, et al., “Comparison of the detonation failure mechanism in homogeneous and heterogeneous explosives,” in: Proc. 13th Symp. Int. on Detonation (2006), pp. 2–11.Google Scholar
  18. 18.
    V. V. Sil’verstov, A. V. Plastinin, S. M. Karakhanov, and V. V. Zykov, “Critical diameter and critical thickness of an emulsion explosive,” Combust., Expl., Shock Waves, 44, No. 3, 354–359 (2008).CrossRefGoogle Scholar
  19. 19.
    J. Lee, F. W. Sandstrom, B. G. Craig, and P. A. Persson, “Detonation and shock initiation properties of emulsion explosives,” in: Proc. 9th Symp. Int. on Detonation (1989), pp. 263–271.Google Scholar
  20. 20.
    J. Lee and P. A. Persson, “Detonation behavior of emulsion explosives,” Propellants, Explosives, Pyrotechnics, No. 15, 208–216 (1990).Google Scholar
  21. 21.
    V. A. Sosnin and E. V. Kolganov, “Detonation in commercial emulsion explosives,” in: V Khariton Scientific Readings, Proc. Int. Conf., Sarov (2003), pp. 288–297.Google Scholar
  22. 22.
    H. Eyring, R. E. Powell, G. H. Duffey, and R. B. Parlin, “The stability of detonation,” Chem. Rev., 45, No. 1, 69–181 (1949).CrossRefGoogle Scholar
  23. 23.
    J. B. Bdzil, “Steady-state two-dimensional detonation,” J. Fluid Mech., 108, 195–226 (1981).MATHCrossRefADSGoogle Scholar
  24. 24.
    S. G. Andreev and A. V. Babkin, in: L. P. Orlenko (ed.), Physics of Explosion [in Russian], Vol. 1, item 9.2.3, Fizmatlit, Moscow (2002).Google Scholar
  25. 25.
    L. Andreevskikh, A. Deribas, O. Drennov, et al., “New mix explosives for explosive welding, in Shock-Assisted Materials,” in: Synthesis and Processing: Science, Innovations, and Industrial Implementation [in Russian], Torus, Moscow (2008), p. 52.Google Scholar
  26. 26.
    G. E. Kuz’min, V. I. Mali, and V. V. Pai, “Throwing of flat plates by layers of condensed HE,” Combust., Expl., Shock Waves, 9, No. 4, 483–486 (1973).CrossRefGoogle Scholar
  27. 27.
    B. Crossland, A. S. Bahrani, J. D. Williams, and V. Shribman, “Explosive welding of tubes to tubeplates,” Weld. Metal Fabr., 35, No. 3, 88–94 (1967).Google Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations