Combustion, Explosion, and Shock Waves

, Volume 45, Issue 4, pp 383–391 | Cite as

Experimental studies of the role of chemical kinetics in turbulent flames

  • A. A. Burluka
  • J. F. Griffiths
  • K. Liu
  • M. Ormsby


Flames of di-t-butyl-peroxide (DTBP) decomposition in a 0.376DTBP + 1.0N2 mixture are studied in laminar and turbulent media. The observed values of unstretched laminar burning velocity are in reasonable agreement with the value obtained from the Zel’dovich-Semenov-Frank-Kamenetsky theory. Turbulent explosions in this particular mixture are characterized by a number of features that are believed to be common for all developing turbulent flames and have relevance to spark-ignition engine combustion of lean mixtures. Flame propagation is unsteady and is characterized by a mass burning rate that increases in time. The rate of the flame acceleration varies from one explosion to another. If the burning rate is related to the average flame radius, however, it exhibits much smaller variations. This phenomenon bears a striking resemblance to cycle-to-cycle variations in a spark-ignition engine. Comparisons of the present results with mixtures of significantly different composition, chemical kinetics, and exothermicity, but with similar laminar flame speed and Lewis number show that the data obtained in closed-volume explosions are in good agreement if the unsteady character of the flame is taken into account. The differences in details of the kinetic mechanisms and thermochemistry appear to be responsible for the flame behaviour only near the limit of extinction by turbulence.

Key words

turbulent flames di-t-butyl peroxide (DTBP) simple kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Millerm, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst., 26, 461–480 (1996).Google Scholar
  2. 2.
    J. F. Griffiths, “Thermokinetic interactions in simple gaseous reactions,” Ann. Rev. Phys. Chem., 36, 77–104 (1985).CrossRefGoogle Scholar
  3. 3.
    D. H. Shaw and H. O. Pritchard, “Thermal decomposition of di-tert-butyl peroxide at high pressure,” Can. J. Chem., 46, 2721–2724 (1968).CrossRefGoogle Scholar
  4. 4.
    R. Borghi, M. Destriau, and G. de Soete, Combustion and Flames: Chemical and Physical Principles, Editions Technip, Paris (1998).Google Scholar
  5. 5.
    S. W. Benson, Thermochemical Kinetics, Wiley and Sons, New York (1976).Google Scholar
  6. 6.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1977).Google Scholar
  7. 7.
    D. Indritz, J. Stone, and F. Williams, “Vapor pressure of di-tert-butyl peroxide,” J. Chem. Eng. Data, 23, 6–7 (1978).CrossRefGoogle Scholar
  8. 8.
    V. P. Karpov and A. S. Sokolik, “Laminar and turbulent flames in the decomposition of hydrazine,” Russian J. Phys. Chem., 38, 903–905 (1964).Google Scholar
  9. 9.
    V. P. Karpov and E. S. Severin, “Effects of molecular-transport coefficients on the rate of turbulent combustion,” Combust., Expl., Shock Waves, 16, No. 1, 41–46 (1980).CrossRefGoogle Scholar
  10. 10.
    M. Nakahara and H. Kido, “A study of the premixed turbulent combustion mechanism taking the preferential diffusion effect into consideration,” in: Mémoires of the Faculty of Engineering, Vol. 58, Kyushu Univ. (1998), pp. 55–82.Google Scholar
  11. 11.
    B. Leisenheimer and W. Leuckel, “Self-generated acceleration of confined deflagrative flame fronts,” Combust. Sci. Technol., 118, 147–164 (1996).CrossRefGoogle Scholar
  12. 12.
    M. D. Checkel and S.-K. Ting, “Turbulence effects on developing turbulent flames in a constant volume combustion bomb,” SAE Paper No. 930867 (1993).Google Scholar
  13. 13.
    I. K. Nwagwe, H. G. Weller, G. R. Tabor, A. D. Gosman, M. Lawes, C. G. W. Sheppard, and R. Woolley, “Measurements and large eddy simulations of turbulent premixed flame kernel growth,” Proc. Combust. Inst., 28, 59–64 (2000).CrossRefGoogle Scholar
  14. 14.
    B. Lewis and G. von Elbe, Flames, Combustion and Explosions in Gases, Academic Press, New York (1987).Google Scholar
  15. 15.
    V. P. Karpov, A. N. Lipatnikov, and P. Wolanski, “Finding the markstein number using the measurements of expanding spherical laminar flames,” Combust. Flame, 109, 436–448 (1997).CrossRefGoogle Scholar
  16. 16.
    X. J. Cu, M. Z. Haq, M. Lawes, and R. Woolley, “Laminar burning velocity and Markstein lengths of methane- air mixtures,” Combust. Flame, 121, 41–58 (2000).CrossRefGoogle Scholar
  17. 17.
    R. Maly, “Ignition model for spark discharges and the early phase of flame front growth,” Proc. Combust. Inst., 18, 1747–1754 (1981).Google Scholar
  18. 18.
    Ya. Zel’dovich, I. G. Barenblatt, V. B. Librovich, G. M. Makhviladze, Mathematical Theory of Combustion and Explosion, Springer Verlag, Berlin (1985).Google Scholar
  19. 19.
    D. Bradley, M. Z. Haq, R. A. Hicks, T. Kitagawa, M. Lawes, C. G. W. Sheppard, and R. Woolley, “Turbulent burning velocity, burned gas distribution, and associated flame surface definition,” Combust. Flame, 133, 415–430 (2003).CrossRefGoogle Scholar
  20. 20.
    K. R. C. Mann, D. S.-K. Ting, and P. F. Henshaw, “A semi-empirical model of spark-ignited turbulent flame growth,” SAE Paper No. 2000-01-0201 (2000).Google Scholar
  21. 21.
    A. N. Lipatnikov, “Some issues of using markstein number for modelling premixed turbulent combustion,” Combust. Sci. Technol., 119, 131–154 (1996).CrossRefGoogle Scholar
  22. 22.
    R. G. Abdel-Gayed, D. Bradley, and M. Lawes, “Turbulent burning velocities — a general correlation in terms of straining rates,” Proc. Roy. Soc. London, A, 414, 389–413 (1987).CrossRefADSGoogle Scholar
  23. 23.
    A. N. Lipatnikov and J. Chomiak, “Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames,” Combust. Sci. Technol., 137, 277–298 (1998).CrossRefGoogle Scholar
  24. 24.
    N. Peters, Turbulent Combustion, Cambridge Univ. Press (2000).Google Scholar
  25. 25.
    B. Rogg and I. S. Wichman, “Approach to asymptotic analysis of the ozone-decomposition flame,” Combust. Flame, 62, 271–293 (1985).CrossRefGoogle Scholar
  26. 26.
    F. Cramarossa and G. Dixon-Lewis, “Ozone decomposition in relation to the problem of the existence of steadystate flames,” Combust. Flame, 16, 243–251 (1971).CrossRefGoogle Scholar
  27. 27.
    S. S. Singh, J. M. Powers, and S. Paolucci, “On slow manifolds of chemically reactive systems,” J. Chem. Phys., 117, 1482–1496 (2002).CrossRefADSGoogle Scholar
  28. 28.
    A. A. Konnov and J. de Ruyck, “Kinetic modeling of the decomposition and flames of hydrazine,” Combust. Flame, 124, 106–126 (2001).CrossRefGoogle Scholar
  29. 29.
    P. G. Vagelopoulos and F. N. Egolfopoulos, “Direct experimental determination of laminar flame speeds,” Proc. Combust. Inst., 27, 513–519 (1998).Google Scholar
  30. 30.
    K. J. Bosschaart and L. P. H. de Goey, “The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method,” Combust. Flame, 136, 261–269 (2004).CrossRefGoogle Scholar
  31. 31.
    A. N. Lipatnikov and J. Chomiak, “Turbulent flame speed and thickness: phenomenology, evaluation and application in multi-dimensional simulations,” Prog. Energ. Combust. Sci., 28, 1–74 (2002).CrossRefGoogle Scholar
  32. 32.
    A. N. Lipatnikov and J. Chomiak, “Are premixed turbulent stagnation flames equivalent to fully developed ones? A computational study,” J. Combust. Sci. Technol., 174, 3–26 (2002).CrossRefGoogle Scholar
  33. 33.
    H. Kobayashi, Y. Kawabata, and K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure,” Proc. Combust. Inst., 27, 941–948 (1998).Google Scholar
  34. 34.
    V.P. Karpov and E. S. Severin, “Turbulent combustion of mixtures of hydrogen and carbon monoxide,” Combust., Expl., Shock Waves, 18, No. 6, 643–644 (1982).Google Scholar
  35. 35.
    R. G. Abdel-Gayed and D. Bradley, “Criteria for turbulent propagation limits of premixed flames,” Combust. Flame, 62, 61–68 (1985).CrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  • A. A. Burluka
    • 1
  • J. F. Griffiths
    • 2
  • K. Liu
    • 3
  • M. Ormsby
    • 1
  1. 1.School of Mechanical EngineeringUniversity of LeedsLeedsUK
  2. 2.School of ChemistryUniversity of LeedsLeedsUK
  3. 3.Siemens Ind. Turbomachinery Ltd.LincolnUK

Personalised recommendations