Skip to main content
Log in

Experimental studies of the role of chemical kinetics in turbulent flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Flames of di-t-butyl-peroxide (DTBP) decomposition in a 0.376DTBP + 1.0N2 mixture are studied in laminar and turbulent media. The observed values of unstretched laminar burning velocity are in reasonable agreement with the value obtained from the Zel’dovich-Semenov-Frank-Kamenetsky theory. Turbulent explosions in this particular mixture are characterized by a number of features that are believed to be common for all developing turbulent flames and have relevance to spark-ignition engine combustion of lean mixtures. Flame propagation is unsteady and is characterized by a mass burning rate that increases in time. The rate of the flame acceleration varies from one explosion to another. If the burning rate is related to the average flame radius, however, it exhibits much smaller variations. This phenomenon bears a striking resemblance to cycle-to-cycle variations in a spark-ignition engine. Comparisons of the present results with mixtures of significantly different composition, chemical kinetics, and exothermicity, but with similar laminar flame speed and Lewis number show that the data obtained in closed-volume explosions are in good agreement if the unsteady character of the flame is taken into account. The differences in details of the kinetic mechanisms and thermochemistry appear to be responsible for the flame behaviour only near the limit of extinction by turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Millerm, “Theory and modeling in combustion chemistry,” Proc. Combust. Inst., 26, 461–480 (1996).

    Google Scholar 

  2. J. F. Griffiths, “Thermokinetic interactions in simple gaseous reactions,” Ann. Rev. Phys. Chem., 36, 77–104 (1985).

    Article  Google Scholar 

  3. D. H. Shaw and H. O. Pritchard, “Thermal decomposition of di-tert-butyl peroxide at high pressure,” Can. J. Chem., 46, 2721–2724 (1968).

    Article  Google Scholar 

  4. R. Borghi, M. Destriau, and G. de Soete, Combustion and Flames: Chemical and Physical Principles, Editions Technip, Paris (1998).

    Google Scholar 

  5. S. W. Benson, Thermochemical Kinetics, Wiley and Sons, New York (1976).

    Google Scholar 

  6. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1977).

    Google Scholar 

  7. D. Indritz, J. Stone, and F. Williams, “Vapor pressure of di-tert-butyl peroxide,” J. Chem. Eng. Data, 23, 6–7 (1978).

    Article  Google Scholar 

  8. V. P. Karpov and A. S. Sokolik, “Laminar and turbulent flames in the decomposition of hydrazine,” Russian J. Phys. Chem., 38, 903–905 (1964).

    Google Scholar 

  9. V. P. Karpov and E. S. Severin, “Effects of molecular-transport coefficients on the rate of turbulent combustion,” Combust., Expl., Shock Waves, 16, No. 1, 41–46 (1980).

    Article  Google Scholar 

  10. M. Nakahara and H. Kido, “A study of the premixed turbulent combustion mechanism taking the preferential diffusion effect into consideration,” in: Mémoires of the Faculty of Engineering, Vol. 58, Kyushu Univ. (1998), pp. 55–82.

    Google Scholar 

  11. B. Leisenheimer and W. Leuckel, “Self-generated acceleration of confined deflagrative flame fronts,” Combust. Sci. Technol., 118, 147–164 (1996).

    Article  Google Scholar 

  12. M. D. Checkel and S.-K. Ting, “Turbulence effects on developing turbulent flames in a constant volume combustion bomb,” SAE Paper No. 930867 (1993).

  13. I. K. Nwagwe, H. G. Weller, G. R. Tabor, A. D. Gosman, M. Lawes, C. G. W. Sheppard, and R. Woolley, “Measurements and large eddy simulations of turbulent premixed flame kernel growth,” Proc. Combust. Inst., 28, 59–64 (2000).

    Article  Google Scholar 

  14. B. Lewis and G. von Elbe, Flames, Combustion and Explosions in Gases, Academic Press, New York (1987).

    Google Scholar 

  15. V. P. Karpov, A. N. Lipatnikov, and P. Wolanski, “Finding the markstein number using the measurements of expanding spherical laminar flames,” Combust. Flame, 109, 436–448 (1997).

    Article  Google Scholar 

  16. X. J. Cu, M. Z. Haq, M. Lawes, and R. Woolley, “Laminar burning velocity and Markstein lengths of methane- air mixtures,” Combust. Flame, 121, 41–58 (2000).

    Article  Google Scholar 

  17. R. Maly, “Ignition model for spark discharges and the early phase of flame front growth,” Proc. Combust. Inst., 18, 1747–1754 (1981).

    Google Scholar 

  18. Ya. Zel’dovich, I. G. Barenblatt, V. B. Librovich, G. M. Makhviladze, Mathematical Theory of Combustion and Explosion, Springer Verlag, Berlin (1985).

    Google Scholar 

  19. D. Bradley, M. Z. Haq, R. A. Hicks, T. Kitagawa, M. Lawes, C. G. W. Sheppard, and R. Woolley, “Turbulent burning velocity, burned gas distribution, and associated flame surface definition,” Combust. Flame, 133, 415–430 (2003).

    Article  Google Scholar 

  20. K. R. C. Mann, D. S.-K. Ting, and P. F. Henshaw, “A semi-empirical model of spark-ignited turbulent flame growth,” SAE Paper No. 2000-01-0201 (2000).

  21. A. N. Lipatnikov, “Some issues of using markstein number for modelling premixed turbulent combustion,” Combust. Sci. Technol., 119, 131–154 (1996).

    Article  Google Scholar 

  22. R. G. Abdel-Gayed, D. Bradley, and M. Lawes, “Turbulent burning velocities — a general correlation in terms of straining rates,” Proc. Roy. Soc. London, A, 414, 389–413 (1987).

    Article  ADS  Google Scholar 

  23. A. N. Lipatnikov and J. Chomiak, “Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames,” Combust. Sci. Technol., 137, 277–298 (1998).

    Article  Google Scholar 

  24. N. Peters, Turbulent Combustion, Cambridge Univ. Press (2000).

  25. B. Rogg and I. S. Wichman, “Approach to asymptotic analysis of the ozone-decomposition flame,” Combust. Flame, 62, 271–293 (1985).

    Article  Google Scholar 

  26. F. Cramarossa and G. Dixon-Lewis, “Ozone decomposition in relation to the problem of the existence of steadystate flames,” Combust. Flame, 16, 243–251 (1971).

    Article  Google Scholar 

  27. S. S. Singh, J. M. Powers, and S. Paolucci, “On slow manifolds of chemically reactive systems,” J. Chem. Phys., 117, 1482–1496 (2002).

    Article  ADS  Google Scholar 

  28. A. A. Konnov and J. de Ruyck, “Kinetic modeling of the decomposition and flames of hydrazine,” Combust. Flame, 124, 106–126 (2001).

    Article  Google Scholar 

  29. P. G. Vagelopoulos and F. N. Egolfopoulos, “Direct experimental determination of laminar flame speeds,” Proc. Combust. Inst., 27, 513–519 (1998).

    Google Scholar 

  30. K. J. Bosschaart and L. P. H. de Goey, “The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method,” Combust. Flame, 136, 261–269 (2004).

    Article  Google Scholar 

  31. A. N. Lipatnikov and J. Chomiak, “Turbulent flame speed and thickness: phenomenology, evaluation and application in multi-dimensional simulations,” Prog. Energ. Combust. Sci., 28, 1–74 (2002).

    Article  Google Scholar 

  32. A. N. Lipatnikov and J. Chomiak, “Are premixed turbulent stagnation flames equivalent to fully developed ones? A computational study,” J. Combust. Sci. Technol., 174, 3–26 (2002).

    Article  Google Scholar 

  33. H. Kobayashi, Y. Kawabata, and K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure,” Proc. Combust. Inst., 27, 941–948 (1998).

    Google Scholar 

  34. V.P. Karpov and E. S. Severin, “Turbulent combustion of mixtures of hydrogen and carbon monoxide,” Combust., Expl., Shock Waves, 18, No. 6, 643–644 (1982).

    Google Scholar 

  35. R. G. Abdel-Gayed and D. Bradley, “Criteria for turbulent propagation limits of premixed flames,” Combust. Flame, 62, 61–68 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Burluka.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 43–52, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burluka, A.A., Griffiths, J.F., Liu, K. et al. Experimental studies of the role of chemical kinetics in turbulent flames. Combust Explos Shock Waves 45, 383–391 (2009). https://doi.org/10.1007/s10573-009-0048-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0048-y

Key words

Navigation