Skip to main content
Log in

Metallic glass particle reinforced Al-based and (Al-Ni)-based metal matrix composites

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Metallic glass particle reinforced Al-based and (Al-Ni)-based metal matrix composites are obtained by explosive compaction of powders. These composites contain no Mach holes, cracks, or other obvious defects. The mass fraction of the amorphous phase is varied from 5 to 20%. The x-ray diffraction and differential thermal analysis of the composite specimens show that the amorphous phase is maintained in the composites without crystallization during the compaction. Furthermore, photographs of the composites obtained on a scanning electron microscope show that the metallic glass particles are uniformly distributed in the matrix. Compared to monolithic aluminum, the composites have a higher Rockwell hardness proportional to the mass fraction of the reinforcing amorphous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Xu, G. Duan, and W. L. Johnson, “Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper,” Phys. Rev. Lett., 92, No. 24, 245504-1–245504-4 (2004).

    Article  ADS  Google Scholar 

  2. J. Saida, M. Matsushita, C. Li, and A. Inoue, “Formation of icosahedral quasicrystalline phase in Zr70Ni10M20 (M = Pd, Au, Pt) ternary metallic glasses,” Appl. Phys. Lett., 76, No. 24, 3558–3560 (2000).

    Article  ADS  Google Scholar 

  3. S. Yi and D. H. Kim, “Stability and phase transformations of icosahedral phase in a 41.5Zr41.5Ti17Ni alloy,” J. Mater. Res., 15, 892–897 (2000).

    Article  ADS  Google Scholar 

  4. B. S. Murty, D. H. Ping, K. Hono, and A. Inoue, “Direct evidence for oxygen stabilization of icosahedral phase during crystallization of Zr65Cu27.5Al7.5 metallic glass,” Appl. Phys. Lett., 76, No. 1, 55–57 (2000).

    Article  ADS  Google Scholar 

  5. S. C. Tjong and Z. Y. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composites,” Mater. Sci. Eng., R: Reports, 29, Nos. 3–4, 49–113 (2000).

    Article  Google Scholar 

  6. J. Ram, M. Campo, and A. Urena, “Sol-gel coatings to improve processing of aluminium matrix SiC reinforced composite materials,” J. Mater. Res., 19, No. 7, 2109–2116 (2004).

    Article  ADS  Google Scholar 

  7. M. H. Lee, J. H. Kim, J. S. Park, J. C. Kim, W. T. Kim, and D. H. Kim, “Fabrication of Ni-Nb-Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process,” Scripta Mater., 50, No. 11, 1367–1371 (2004).

    Article  Google Scholar 

  8. Yu P., Zhang L. C., Zhang W. Y., et al., “Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al-based MMCs,” Mater. Sci. Eng., A., 444, Nos. 1–2, 206–213 (2007).

    Google Scholar 

  9. M. H. Lee, J. H. Kim, J. S. Park, W. T. Kim, and D. H. Kim, “Development of Ni-Nb-Ta metallic glass particle reinforced Al-based matrix composites,” Mater. Sci. Forum., 475, No. 5, 3427–3430 (2005).

    Article  MathSciNet  Google Scholar 

  10. P. Yu, K. B. Kim, J. Das, F. Baier, W. Xu, and J. Eckert, “Fabrication and mechanical properties of Ni-Nb metallic glass particle-reinforced Al-based metal matrix composite,” Scripta Mater., 54, No. 8, 1445–1450 (2006).

    Article  Google Scholar 

  11. Z. Zhang, B. Q. Han, D. Witkin, et al., “Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al-Ni-La amorphous particles,” Scripta Mater., 54, No. 5, 869–874 (2006).

    Article  Google Scholar 

  12. M. T. Stawovy and A. O. Aning, “Processing of amorphous Fe-W reinforced Fe matrix composites,” Mater. Sci. Eng., A, 256, Nos. 1–2, 138–143 (1998).

    Google Scholar 

  13. J. Wang, X. Li, H. Yan, et al., “Research of energy deposition caused by microexplosive welding in explosive consolidation of metal powders,” Rare Metal Mater., Eng., 35, No. 7, 1039–1044 (2006).

    ADS  Google Scholar 

  14. M. A. Meyers and S. L. Wang, “An improved method for shock consolidation of powders,” Acta Metall., 36, No. 24, 925–936 (1988).

    Google Scholar 

  15. R. Prummer, “Explosive compaction of metallic glass powders,” Mater. Sci. Eng., 98, 461–463 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 2, pp. 137–142, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XL., Wang, JX., Sun, YX. et al. Metallic glass particle reinforced Al-based and (Al-Ni)-based metal matrix composites. Combust Explos Shock Waves 45, 230–235 (2009). https://doi.org/10.1007/s10573-009-0030-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0030-8

Key words

Navigation