Combustion, Explosion, and Shock Waves

, Volume 45, Issue 2, pp 230–235 | Cite as

Metallic glass particle reinforced Al-based and (Al-Ni)-based metal matrix composites

  • Xiao-Li Zhang
  • Jin-Xiang Wang
  • Yu-Xin Sun
  • Jia-Cong Liu


Metallic glass particle reinforced Al-based and (Al-Ni)-based metal matrix composites are obtained by explosive compaction of powders. These composites contain no Mach holes, cracks, or other obvious defects. The mass fraction of the amorphous phase is varied from 5 to 20%. The x-ray diffraction and differential thermal analysis of the composite specimens show that the amorphous phase is maintained in the composites without crystallization during the compaction. Furthermore, photographs of the composites obtained on a scanning electron microscope show that the metallic glass particles are uniformly distributed in the matrix. Compared to monolithic aluminum, the composites have a higher Rockwell hardness proportional to the mass fraction of the reinforcing amorphous phase.

Key words

metallic glass particle reinforced composites metal matrix composites explosive compaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Xu, G. Duan, and W. L. Johnson, “Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper,” Phys. Rev. Lett., 92, No. 24, 245504-1–245504-4 (2004).CrossRefADSGoogle Scholar
  2. 2.
    J. Saida, M. Matsushita, C. Li, and A. Inoue, “Formation of icosahedral quasicrystalline phase in Zr70Ni10M20 (M = Pd, Au, Pt) ternary metallic glasses,” Appl. Phys. Lett., 76, No. 24, 3558–3560 (2000).CrossRefADSGoogle Scholar
  3. 3.
    S. Yi and D. H. Kim, “Stability and phase transformations of icosahedral phase in a 41.5Zr41.5Ti17Ni alloy,” J. Mater. Res., 15, 892–897 (2000).CrossRefADSGoogle Scholar
  4. 4.
    B. S. Murty, D. H. Ping, K. Hono, and A. Inoue, “Direct evidence for oxygen stabilization of icosahedral phase during crystallization of Zr65Cu27.5Al7.5 metallic glass,” Appl. Phys. Lett., 76, No. 1, 55–57 (2000).CrossRefADSGoogle Scholar
  5. 5.
    S. C. Tjong and Z. Y. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composites,” Mater. Sci. Eng., R: Reports, 29, Nos. 3–4, 49–113 (2000).CrossRefGoogle Scholar
  6. 6.
    J. Ram, M. Campo, and A. Urena, “Sol-gel coatings to improve processing of aluminium matrix SiC reinforced composite materials,” J. Mater. Res., 19, No. 7, 2109–2116 (2004).CrossRefADSGoogle Scholar
  7. 7.
    M. H. Lee, J. H. Kim, J. S. Park, J. C. Kim, W. T. Kim, and D. H. Kim, “Fabrication of Ni-Nb-Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process,” Scripta Mater., 50, No. 11, 1367–1371 (2004).CrossRefGoogle Scholar
  8. 8.
    Yu P., Zhang L. C., Zhang W. Y., et al., “Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al-based MMCs,” Mater. Sci. Eng., A., 444, Nos. 1–2, 206–213 (2007).Google Scholar
  9. 9.
    M. H. Lee, J. H. Kim, J. S. Park, W. T. Kim, and D. H. Kim, “Development of Ni-Nb-Ta metallic glass particle reinforced Al-based matrix composites,” Mater. Sci. Forum., 475, No. 5, 3427–3430 (2005).CrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Yu, K. B. Kim, J. Das, F. Baier, W. Xu, and J. Eckert, “Fabrication and mechanical properties of Ni-Nb metallic glass particle-reinforced Al-based metal matrix composite,” Scripta Mater., 54, No. 8, 1445–1450 (2006).CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, B. Q. Han, D. Witkin, et al., “Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al-Ni-La amorphous particles,” Scripta Mater., 54, No. 5, 869–874 (2006).CrossRefGoogle Scholar
  12. 12.
    M. T. Stawovy and A. O. Aning, “Processing of amorphous Fe-W reinforced Fe matrix composites,” Mater. Sci. Eng., A, 256, Nos. 1–2, 138–143 (1998).Google Scholar
  13. 13.
    J. Wang, X. Li, H. Yan, et al., “Research of energy deposition caused by microexplosive welding in explosive consolidation of metal powders,” Rare Metal Mater., Eng., 35, No. 7, 1039–1044 (2006).ADSGoogle Scholar
  14. 14.
    M. A. Meyers and S. L. Wang, “An improved method for shock consolidation of powders,” Acta Metall., 36, No. 24, 925–936 (1988).Google Scholar
  15. 15.
    R. Prummer, “Explosive compaction of metallic glass powders,” Mater. Sci. Eng., 98, 461–463 (1988).CrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  • Xiao-Li Zhang
    • 1
    • 2
  • Jin-Xiang Wang
    • 1
  • Yu-Xin Sun
    • 1
  • Jia-Cong Liu
    • 2
  1. 1.State Key Laboratory of Transient PhysicsNanjing University of Science and TechnologyNanjingP. R. China
  2. 2.Engineering Mechanics Department of Institute of Chemical TechnologyNanjing University of Science and TechnologyJiangsuP. R. China

Personalised recommendations