Advertisement

Combustion, Explosion, and Shock Waves

, Volume 44, Issue 6, pp 655–661 | Cite as

Dynamic combustion regimes of the Ti-(Ti+0.5C) layered system in a concurrent nitrogen flow

  • B. S. Seplyarskii
  • S. V. Kostin
  • G. B. Brauer
Article

Abstract

The filtration combustion of a layered porous fill consisting of alternating layers of a mixture of Ti + 0.5C a titanium powder with forced concurrent filtration of nitrogen was studied for the first time. The gas flow through the sample was provided by a vacuum pump attached to the lower end of the fill. The presence of the concurrent gas flow radically changes the character of propagation of the combustion front and the structure and composition of the products obtained. The layers consisting of carbonitride and titanium nitride make a single unit. The experiments provided scientific bases for the production of new laminated and composite ceramic materials by dynamic filtration combustion.

Key words

gas permeability filtration convective-conductive mechanism multilayered sample 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Merzhanov, I. P. Borovinskaya, and Yu. E. Volodin, Combustion of Porous Samples of Metals in Gaseous Nitrogen and Synthesis of Nitrides, Report of the Institute of Chemical Physics, USSR Academy of Sciences (1971).Google Scholar
  2. 2.
    A. G. Merzhanov, I. P. Borovinskaya, and Yu. E. Volodin, “On the combustion mechanism of porous metal samples in nitrogen,” Dokl. Akad. Nauk SSSR, 206, No. 4, 905–908 (1972).Google Scholar
  3. 3.
    A. S. Mukasyan, V. A. Shugaev, and N. V. Kiryakov, “Effect of gaseous fluid phases on combustion of metals in nitrogen,” Combust., Expl., Shock Waves, 29, No. 1, 7–11 (1993).CrossRefGoogle Scholar
  4. 4.
    I. P. Borovinskaya and A. N. Pityulin, “Combustion of hafnium in nitrogen,” Combust., Expl., Shock Waves, 14, No. 1, 111–114 (1978).CrossRefGoogle Scholar
  5. 5.
    A. B. Avakyan, A. R. Bagramyan, I. P. Borovinskaya, S. L. Grigoryan, and A. G. Merzhanov, “Synthesis of carbonitrides of transition metals,” in: Combustion Processes in Chemical Technology And Metallurgy [in Russian], Chernogolovka (1975), pp. 98–113.Google Scholar
  6. 6.
    A. S. Mukasyan, V. M. Martynenko, A. G. Merzhanov, I. P. Borovinskaya, and M. Yu. Blinov, “Mechanism and principles of silicon combustion in nitrogen,” Combust., Expl., Shock Waves, 22, No. 5, 534–540 (1986).CrossRefGoogle Scholar
  7. 7.
    J. Degreve, J. Puszynski, and V. Hlavachek, “Synthesis of nitrides and hydrides by filtration combustion,” in: K. A. Gabriel et al. (eds.), Mater. Process by SHS, MTLSP-87-3, Watertown (1987), pp. 247–278.Google Scholar
  8. 8.
    S. V. Kostin and V. V. Barzykin, “Filtration-diffusion combustion limit of a titanium powder in nitrogen upon degassing,” Combust., Expl., Shock Waves, 37, No. 3, 297–302 (2001).CrossRefGoogle Scholar
  9. 9.
    A. G. Merzhanov, Solid Flame Combustion, Institute of Problems of Material Science [in Russian], Chernogolovka (2000).Google Scholar
  10. 10.
    A. K. Filonenko, “Unsteady phenomena in combustion of heterogeneous systems forming high-melting products,” in: Combustion Processes in Chemical Technology and Metallurgy, Chernogolovka (1975), pp. 258–273.Google Scholar
  11. 11.
    A. P. Aldushin and B. S. Seplyarskii, “Theory of filtration combustion of porous metal powders,” Preprint, Joint Institute of Chemical Physics, Chernogolovka (1977).Google Scholar
  12. 12.
    A. P. Aldushin and B. S. Sepljarskii, “Propagation of the wave of an exothermic reaction in a porous medium purged with a gas,” Dokl. Akad. Nauk SSSR, 241, No. 1, 72–75 (1978).Google Scholar
  13. 13.
    A. P. Aldushin and B. S. Seplyarskii, “Inversion of the wave structure in a porous medium purged with a gas,” Dokl. Akad. Nauk SSSR, 249, No. 3, 585–588 (1979).Google Scholar
  14. 14.
    B. S. Seplyarskii, “Nature of an abnormal dependence of the burning rate of gasless systems on diameter,” Dokl. Ross. Akad. Nauk, 396, No. 5, 640–643 (2004).Google Scholar
  15. 15.
    A. F. Belyaev, V. K. Bobolev, A. N. Korotokov, et al., Transition of Deflagration of Condensed Systems to Detonation [in Russian], Nauka, Moscow (1973).Google Scholar
  16. 16.
    A. N. Pityulin, V. A. Shcherbakov, I. P. Borovinskaya, and A. G. Merzhanov, “Laws and mechanism of laminated filtrational combustion of metals,” Combust., Expl., Shock Waves, 15, No. 4, 9–17 (1979).Google Scholar
  17. 17.
    A. P. Aldushin, B. S. Seplyarskii, K. G. Shkadinskii, “Theory of filtrational combustion,” Combust., Expl., Shock Waves, 16, No. 1. 33–40 (1980).CrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2008

Authors and Affiliations

  • B. S. Seplyarskii
    • 1
  • S. V. Kostin
    • 1
  • G. B. Brauer
    • 1
  1. 1.Institute of Structural Macrokinetics and Problems of Materials ScienceRussian Academy of ScienceChernogolovkaRussia

Personalised recommendations