Combustion, Explosion, and Shock Waves

, Volume 44, Issue 4, pp 388–396 | Cite as

Filtration combustion of liquid monofuels

  • N. A. Kakutkina


A one-dimensional two-temperature model for filtration combustion of liquid monofuels is proposed. The model is used to analyze the filtration combustion of liquid hydrazine in narrow tubes. Two steady-state regimes are found. In regime I, the dominant mechanism of heat transfer from the combustion products in the preflame zone is heat conduction in the gas, and in regime II, this is interfacial convective heat transfer and heat conduction in the solid phase. Parameter ranges for the existence of the regimes are established.

Key words

filtration combustion monofuel liquid combustion gas combustion in a tube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. M. Laevskii and V. S. Babkin, in: Yu. Sh. Matros (ed.), Propagation of Thermal Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988).Google Scholar
  2. 2.
    V. S. Babkin, “Filtrational combustion of gases. Present state of affairs and prospects,” Pure Appl. Chem., 65, No. 2, 335–344 (1993).CrossRefGoogle Scholar
  3. 3.
    K. V. Dobrego and S. A. Zhdanok, Physics of Filtration Gas Combustion, Lykov Institute of Heat and Mass Transfer [in Russian], Minsk (2002).Google Scholar
  4. 4.
    S. I. Fut’ko and S. A. Zhdanok, Chemistry of Filtration Gas Combustion [in Russian], Belaruskaya Nauka, Minsk (2004).Google Scholar
  5. 5.
    K. V. Dobrego, S. A. Zhdanok, and A. I. Zaruba, “Experimental and analytical investigation of the gas filtration combustion inclination instability,” Heat and Mass Transfer, 44, No. 11, 2127–2136 (2001).MATHCrossRefGoogle Scholar
  6. 6.
    N. A. Kakutkina and M. Mbarawa, “Transition process in filtration gas combustion,” Combust., Expl., Shock Waves, 40, No. 5, 553–563 (2004).CrossRefGoogle Scholar
  7. 7.
    N. A. Kakutkina, N. A. Korzhavin, and M. Mbarawa, “Filtration combustion of hydrogen-air, propane-air, and methane-air mixtures in inert porous media,” Combust., Expl., Shock Waves, 42, No. 4, 372–383 (2006).CrossRefGoogle Scholar
  8. 8.
    N. A. Kakutkina, “Some stability aspects of gas combustion in porous media,” Combust., Expl., Shock Waves, 41, No. 4, 395–404 (2005).CrossRefGoogle Scholar
  9. 9.
    S. S. Minaev and V. S. Babkin, “Flame propagation in a variable-section channel with gas filtration,” Combust., Expl., Shock Waves, 37, No. 1, 13–20 (2001).CrossRefGoogle Scholar
  10. 10.
    O. S. Rabinovich, A. V. Fefelov, and N. V. Pavlyukevich, “Modeling of premixed gas combustion in porous media, composed of coarse-sized particles: 1-D description with discrete solid phase,” in: 26 Int. Symp. on Combustion, Combustion Inst., Pittsburgh (1996), pp. 3383–3389.Google Scholar
  11. 11.
    K. V. Dobrego and S. A. Zhdanok, “Engineering analysis of the filtration combustion characteristics based on a two-temperature one-dimensional model,” Inzh.-Fiz. Zh., 71, 424–432 (1998).Google Scholar
  12. 12.
    J. R. Howell, M. J. Hall, and J. I. Ellzey, “Combustion of hydrocarbon fuels within porous inert media,” Prog. Energ. Combust. Sci., 22, No. 2, 122–145 (1996).CrossRefGoogle Scholar
  13. 13.
    R. Johansson, H. Thunman, and B. Leckner, “Influence of intraparticle gradients in modeling of fixed bed combustion,” Combust. Flame, 149, 49–62 (2007).CrossRefGoogle Scholar
  14. 14.
    J. G. Hoffman, R. Echigo, H. Yoshida, and S. Tada, “Experimental study on combustion in porous media with a reciprocating flow system,” Combust. Flame, 111, 32–46 (1997).CrossRefGoogle Scholar
  15. 15.
    R. S. Dhamrat and J. L. Ellzey, “Numerical and experimental study of conversion of methane to hydrogen in a porous media reactor,” Combust. Flame, 144, 698–709 (2006).CrossRefGoogle Scholar
  16. 16.
    G. Brenner, K. Pickenacker, O. Pickenacker, D. Trimis, K. Wawrzinek, and T. Weber, “Numerical and experimental investigation of matrix-stabilized methane-air combustion in porous inert media,” Combust. Flame, 123, 201–213 (2000).CrossRefGoogle Scholar
  17. 17.
    V. S. Babkin, B. Yu. Koshkin, and Yu. M. Laevskii, “Combustion of moving explosives in narrow tubes,” Dokl. Akad. Nauk SSSR, 304, 892–895 (1989).Google Scholar
  18. 18.
    B. Yu. Koshkin, V. A. Bunev, V. S. Babkin, and Yu. M. Laevsky, “The decomposition flame of hydrazine in inert porous media,” Combust. Flame, 103, 143–150 (1995).CrossRefGoogle Scholar
  19. 19.
    N. A. Kakutkina and V. A. Bunev, “Filtration combustion of liquid monofuels,” Combust., Expl., Shock Waves, 37, No. 4, 395–401 (2001).CrossRefGoogle Scholar
  20. 20.
    I. K. Kikoin (ed.), Tables of Physical Quantities: Handbook [in Russian], Atomizdat, Moscow (1976).Google Scholar
  21. 21.
    E. W. Shmidt, Hydrazine and Its Derivatives. Preparation, Properties, Applications, John Wiley, New York (1984).Google Scholar

Copyright information

© MAIK/Nauka 2008

Authors and Affiliations

  1. 1.Institute of Chemical Kinetics and Combustion, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations