Advertisement

Combustion, Explosion, and Shock Waves

, Volume 44, Issue 1, pp 9–17 | Cite as

Effect of trimethylphosphate additives on the flammability concentration limits of premixed methane-air mixtures

  • D. A. Knyazkov
  • S. A. Yakimov
  • O. P. Korobeinichev
  • A. G. Shmakov
Article

Abstract

The effect of small additives of trimethylphosphate (TMP) on the lean and rich flammability concentration limits of CH4/air gas mixtures were studied using an opposed-flow burner and numerical modeling based on detailed kinetic mechanisms. TMP was found to narrow the flammability concentration limits of premixed CH4/air mixtures. Modeling using a previously developed model for flame inhibition by phosphorus compounds showed that the model provides a satisfactory fit to experimental results on the effect of TMP additives on the lean concentration limit.

Key words

flammability concentration limits opposed-flow premixed flame organophosphorus compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. T. Wainner, K. L. McNesby, A. W. Daniel, A. W. Miziolek, and V. I. Babushok, “Experimental and mechanistic investigation of opposed-flow propane/air flames by phosphorus-containing compounds,” in: Halon Options Technical Working Conference (HOTWC), Albuquerque (2000), pp. 141–153.Google Scholar
  2. 2.
    O. P. Korobeinichev, A. L. Mamaev, V. V. Sokolov, T. A. Bolshova, and V. M. Shvartsberg, “Experimental study and modeling of the effect of phosphorous-containing compounds on premixed atmospheric methane-oxygen flame structure and propagation velocity,” in: Halon Options Technical Working Conference (HOTWC), Albuquerque (2001), pp. 173–186.Google Scholar
  3. 3.
    P. A. Glaude, H. J. Curran, W. J. Pitz, and C. K. Westbrook, “Kinetic study of the combustion of organophosphorus compounds,” in: Proc. Combust. Inst., 28, 1749–1756 (2001).CrossRefGoogle Scholar
  4. 4.
    P. A. Glaude, C. F. Melius, W. J. Pitz, and C. K. Westbrook, “Detailed chemical kinetic reaction mechanisms for incineration of organophosphorus and fluoroorganophosphorus compounds,” in: Proc. Combust. Inst., 29, 2469–2476 (2002).CrossRefGoogle Scholar
  5. 5.
    O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, T. A. Bolshova, T. M. Jayaweera, C. F. Melius, W. J. Pitz, and C. K. Westbrook, “Flame inhibition by phosphorus-containing compounds in lean and rich propane flames,” in: Proc. Combust. Inst., 30, No. 2, 2350–2357 (2004).Google Scholar
  6. 6.
    T. M. Jayaweera, C. F. Melius, W. J. Pitz, C. K. Westbrook, O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, I. V. Rybitskaya, and H. J. Curran, “Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios,” Combust. Flame, 140, No. 1–2, 103–115 (2005). http://www-cms.llnl.gov/combustion/combustion2.html# Organophosphorus_Compounds_Effect_on_Flame_Velocitys_over_a_Range_of_Equivalence_Ratios_2004.CrossRefGoogle Scholar
  7. 7.
    J. W. Hastie and D. W. Bonnell, “Molecular chemistry of inhibited combustion systems,” Report. No. NBSIR 80-2169, National Bureau of Standards (1980).Google Scholar
  8. 8.
    J. H. Werner and T. A. Cool, “Kinetic model for the decomposition of DMMP in a hydrogen/oxygen flame,” Combust. Flame, 117, 78–98 (1999).CrossRefGoogle Scholar
  9. 9.
    M. F. M. Nogueira and E. M. Fisher, “Effects of dimethyl methylphosphonate on premixed methane flames,” Combust. Flame, 132, No. 3, 352–363 (2003).CrossRefGoogle Scholar
  10. 10.
    O. P. Korobeinichev, S. B. Ilyin, V. M. Shvartsberg, and A. A. Chernov, “The destruction chemistry of organophosphorus compounds in flames. I: Quantitative determination of final phosphorus-containing combustion products composition in hydrogen-oxygen flame,” Combust. Flame, 118, No. 4, 718–726 (1999).CrossRefGoogle Scholar
  11. 11.
    O. P. Korobeinichev, V. M. Shvartsberg, and A. A. Chernov, “The destruction chemistry of organophosphorus compounds in flames. II: Structure of a hydrogen-oxygen flame doped with trimethylphosphate,” Combust. Flame, 118, No. 4, 727–732 (1999).CrossRefGoogle Scholar
  12. 12.
    O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, “Inhibition of atmospheric lean and rich CH4/O2/Ar flames by phosphorus-containing compound,” in: Proc. Combustion Inst., 31, 2741–2748 (2007).CrossRefGoogle Scholar
  13. 13.
    N. Saito, Y. Saso, C. Liao, Y. Ogawa, and Y. Jnoue, “Flammability peak concentrations of halon replacements and their function as fire suppressant,” in: Halon Replacements: Technology and Science, ACS Symp. Ser., Amer. Chem. Soc. (1995), pp. 243–257.Google Scholar
  14. 14.
    Yu. N. Shebeko, V. V. Azatyan, I. A. Bolodian, V. Yu. Navzenya, S. N. Kopylov, D. Yu. Shebeko, and E. D. Zamishevski, “The influence of fluorinated hydrocarbons on the combustion of gaseous mixtures in a closed vessel,” Combust. Flame, 121, 542–547 (2000).CrossRefGoogle Scholar
  15. 15.
    H. F. Coward and G. W. Jones, “Limits of flammability of gases and vapors,” Bureau of Mines Bull. No. 503, Washington (1952).Google Scholar
  16. 16.
    L. A. Lovachev, V. C. Babkin, V. A. Bunev, et al., “Flammability limits. An invited review,” Combust. Flame, 20, 259–289 (1973).CrossRefGoogle Scholar
  17. 17.
    A. N. Baratov, A. Ya. Korol’chenko, and G. N. Kravchuk, Fire and Explosion Hazard of Substances and Materials and Means of Fire Suppression: Handbook [in Russian], Khimiya, Moscow (1990), p. 30.Google Scholar
  18. 18.
    S. Ishizuka, “Determination of flammability limits using a tubular flame geometry,” J. Loss Prev. Process. Ind., 4, 185–193 (1991).CrossRefGoogle Scholar
  19. 19.
    R. K. Hichens, B. Z. Dlugogorski, and E. M. Z. Kennedy, “Advantages and drawbacks of tubular flow burner for testing flammability limits,” in: Halon Options Technical Working Conference (1999). http://www.bfrl.nist.gov/866/HOTWC/HOTWC2006/pubs/R9902736.pdf.
  20. 20.
    M. Hertzberg, “The theory of flammability limits: natural convection,” Bureau of Mines. Rep. of Investigation No. RI-8127 (1976).Google Scholar
  21. 21.
    C. K. Law, D. L. Zhu, and G. Yu, “Propagation and extinction of stretched premixed flames,” in: Proc. Combust. Inst., 21, 1419–1426 (1986).Google Scholar
  22. 22.
    C. Womeldorf, M. King, and W. Grosshandler, “Lean flammability limit as a fundamental refrigerant property: Phase I,” NIST Interim Tech. Report (1995). Available from: http://www.fire.nist.gov/bfrlpubs/fire95/PDF/f95083.pdf.
  23. 23.
    C. Womeldorf and W. Grosshandler, “Lean flammability limit as a fundamental refrigerant property: Phase II,” NIST Interim Tech. Report (1996).Google Scholar
  24. 24.
    W. Grosshandler, M. Donnelly, and C. Womeldorf, “Lean flammability limit as a fundamental refrigerant property: Phase III,” NIST Interim Tech. Report (1998).Google Scholar
  25. 25.
    A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, Chemkin Collection, Unlimited Release, Sandia Nat. Laboratories, Livermore (1997).Google Scholar
  26. 26.
    R. J. Kee, F. M. Kee, and J. A. Miller, “Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Nat. Laboratory Report No. SAND89-8009 (1989).Google Scholar
  27. 27.
    R. J. Kee, J. A. Miller, G. H. Evans, and G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames,” in: Twenty-Second Symp. (Int.) on Combustion, Vol. 22, Combustion Inst., Pittsburgh (1988), pp. 1479–1494.Google Scholar
  28. 28.
    H. K. Chelliah, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, “An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of the methane-air-nitrogen diffusion flames,” in: Proc. Combust. Inst., 23, 503–511 (1990).Google Scholar
  29. 29.
    F. E. Fendell, “Ignition and extinction in combustion of initially unmixed reactants,” J. Fluid Mech., Vol. 21, 281–303 (1965).MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    A. Linan, “Asymptotic analysis of unsteady diffusion flames for large activation energies,” Acta Astronaut., 1, 1007–1039 (1974).CrossRefGoogle Scholar
  31. 31.
    M. Nishioka, C. K. Law, T. Takeno, “A flame-controlling continuation method for generating S-curve responses with detailed chemistry,” Combust. Flame, 104, 328–342 (1996).CrossRefGoogle Scholar
  32. 32.
    G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/gri_mech/version30/text30.html.

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • D. A. Knyazkov
    • 1
  • S. A. Yakimov
    • 1
  • O. P. Korobeinichev
    • 1
  • A. G. Shmakov
    • 1
  1. 1.Institute of Chemical Kinetics and Combustion, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations