Skip to main content
Log in

Effect of trimethylphosphate additives on the flammability concentration limits of premixed methane-air mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effect of small additives of trimethylphosphate (TMP) on the lean and rich flammability concentration limits of CH4/air gas mixtures were studied using an opposed-flow burner and numerical modeling based on detailed kinetic mechanisms. TMP was found to narrow the flammability concentration limits of premixed CH4/air mixtures. Modeling using a previously developed model for flame inhibition by phosphorus compounds showed that the model provides a satisfactory fit to experimental results on the effect of TMP additives on the lean concentration limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Wainner, K. L. McNesby, A. W. Daniel, A. W. Miziolek, and V. I. Babushok, “Experimental and mechanistic investigation of opposed-flow propane/air flames by phosphorus-containing compounds,” in: Halon Options Technical Working Conference (HOTWC), Albuquerque (2000), pp. 141–153.

  2. O. P. Korobeinichev, A. L. Mamaev, V. V. Sokolov, T. A. Bolshova, and V. M. Shvartsberg, “Experimental study and modeling of the effect of phosphorous-containing compounds on premixed atmospheric methane-oxygen flame structure and propagation velocity,” in: Halon Options Technical Working Conference (HOTWC), Albuquerque (2001), pp. 173–186.

  3. P. A. Glaude, H. J. Curran, W. J. Pitz, and C. K. Westbrook, “Kinetic study of the combustion of organophosphorus compounds,” in: Proc. Combust. Inst., 28, 1749–1756 (2001).

    Article  Google Scholar 

  4. P. A. Glaude, C. F. Melius, W. J. Pitz, and C. K. Westbrook, “Detailed chemical kinetic reaction mechanisms for incineration of organophosphorus and fluoroorganophosphorus compounds,” in: Proc. Combust. Inst., 29, 2469–2476 (2002).

    Article  Google Scholar 

  5. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, T. A. Bolshova, T. M. Jayaweera, C. F. Melius, W. J. Pitz, and C. K. Westbrook, “Flame inhibition by phosphorus-containing compounds in lean and rich propane flames,” in: Proc. Combust. Inst., 30, No. 2, 2350–2357 (2004).

    Google Scholar 

  6. T. M. Jayaweera, C. F. Melius, W. J. Pitz, C. K. Westbrook, O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, I. V. Rybitskaya, and H. J. Curran, “Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios,” Combust. Flame, 140, No. 1–2, 103–115 (2005). http://www-cms.llnl.gov/combustion/combustion2.html# Organophosphorus_Compounds_Effect_on_Flame_Velocitys_over_a_Range_of_Equivalence_Ratios_2004.

    Article  Google Scholar 

  7. J. W. Hastie and D. W. Bonnell, “Molecular chemistry of inhibited combustion systems,” Report. No. NBSIR 80-2169, National Bureau of Standards (1980).

  8. J. H. Werner and T. A. Cool, “Kinetic model for the decomposition of DMMP in a hydrogen/oxygen flame,” Combust. Flame, 117, 78–98 (1999).

    Article  Google Scholar 

  9. M. F. M. Nogueira and E. M. Fisher, “Effects of dimethyl methylphosphonate on premixed methane flames,” Combust. Flame, 132, No. 3, 352–363 (2003).

    Article  Google Scholar 

  10. O. P. Korobeinichev, S. B. Ilyin, V. M. Shvartsberg, and A. A. Chernov, “The destruction chemistry of organophosphorus compounds in flames. I: Quantitative determination of final phosphorus-containing combustion products composition in hydrogen-oxygen flame,” Combust. Flame, 118, No. 4, 718–726 (1999).

    Article  Google Scholar 

  11. O. P. Korobeinichev, V. M. Shvartsberg, and A. A. Chernov, “The destruction chemistry of organophosphorus compounds in flames. II: Structure of a hydrogen-oxygen flame doped with trimethylphosphate,” Combust. Flame, 118, No. 4, 727–732 (1999).

    Article  Google Scholar 

  12. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, “Inhibition of atmospheric lean and rich CH4/O2/Ar flames by phosphorus-containing compound,” in: Proc. Combustion Inst., 31, 2741–2748 (2007).

    Article  Google Scholar 

  13. N. Saito, Y. Saso, C. Liao, Y. Ogawa, and Y. Jnoue, “Flammability peak concentrations of halon replacements and their function as fire suppressant,” in: Halon Replacements: Technology and Science, ACS Symp. Ser., Amer. Chem. Soc. (1995), pp. 243–257.

  14. Yu. N. Shebeko, V. V. Azatyan, I. A. Bolodian, V. Yu. Navzenya, S. N. Kopylov, D. Yu. Shebeko, and E. D. Zamishevski, “The influence of fluorinated hydrocarbons on the combustion of gaseous mixtures in a closed vessel,” Combust. Flame, 121, 542–547 (2000).

    Article  Google Scholar 

  15. H. F. Coward and G. W. Jones, “Limits of flammability of gases and vapors,” Bureau of Mines Bull. No. 503, Washington (1952).

  16. L. A. Lovachev, V. C. Babkin, V. A. Bunev, et al., “Flammability limits. An invited review,” Combust. Flame, 20, 259–289 (1973).

    Article  Google Scholar 

  17. A. N. Baratov, A. Ya. Korol’chenko, and G. N. Kravchuk, Fire and Explosion Hazard of Substances and Materials and Means of Fire Suppression: Handbook [in Russian], Khimiya, Moscow (1990), p. 30.

    Google Scholar 

  18. S. Ishizuka, “Determination of flammability limits using a tubular flame geometry,” J. Loss Prev. Process. Ind., 4, 185–193 (1991).

    Article  Google Scholar 

  19. R. K. Hichens, B. Z. Dlugogorski, and E. M. Z. Kennedy, “Advantages and drawbacks of tubular flow burner for testing flammability limits,” in: Halon Options Technical Working Conference (1999). http://www.bfrl.nist.gov/866/HOTWC/HOTWC2006/pubs/R9902736.pdf.

  20. M. Hertzberg, “The theory of flammability limits: natural convection,” Bureau of Mines. Rep. of Investigation No. RI-8127 (1976).

  21. C. K. Law, D. L. Zhu, and G. Yu, “Propagation and extinction of stretched premixed flames,” in: Proc. Combust. Inst., 21, 1419–1426 (1986).

    Google Scholar 

  22. C. Womeldorf, M. King, and W. Grosshandler, “Lean flammability limit as a fundamental refrigerant property: Phase I,” NIST Interim Tech. Report (1995). Available from: http://www.fire.nist.gov/bfrlpubs/fire95/PDF/f95083.pdf.

  23. C. Womeldorf and W. Grosshandler, “Lean flammability limit as a fundamental refrigerant property: Phase II,” NIST Interim Tech. Report (1996).

  24. W. Grosshandler, M. Donnelly, and C. Womeldorf, “Lean flammability limit as a fundamental refrigerant property: Phase III,” NIST Interim Tech. Report (1998).

  25. A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, Chemkin Collection, Unlimited Release, Sandia Nat. Laboratories, Livermore (1997).

    Google Scholar 

  26. R. J. Kee, F. M. Kee, and J. A. Miller, “Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Nat. Laboratory Report No. SAND89-8009 (1989).

  27. R. J. Kee, J. A. Miller, G. H. Evans, and G. Dixon-Lewis, “A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames,” in: Twenty-Second Symp. (Int.) on Combustion, Vol. 22, Combustion Inst., Pittsburgh (1988), pp. 1479–1494.

    Google Scholar 

  28. H. K. Chelliah, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, “An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of the methane-air-nitrogen diffusion flames,” in: Proc. Combust. Inst., 23, 503–511 (1990).

    Google Scholar 

  29. F. E. Fendell, “Ignition and extinction in combustion of initially unmixed reactants,” J. Fluid Mech., Vol. 21, 281–303 (1965).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. A. Linan, “Asymptotic analysis of unsteady diffusion flames for large activation energies,” Acta Astronaut., 1, 1007–1039 (1974).

    Article  Google Scholar 

  31. M. Nishioka, C. K. Law, T. Takeno, “A flame-controlling continuation method for generating S-curve responses with detailed chemistry,” Combust. Flame, 104, 328–342 (1996).

    Article  Google Scholar 

  32. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/gri_mech/version30/text30.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Knyazkov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 1, pp. 12–21, January–February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knyazkov, D.A., Yakimov, S.A., Korobeinichev, O.P. et al. Effect of trimethylphosphate additives on the flammability concentration limits of premixed methane-air mixtures. Combust Explos Shock Waves 44, 9–17 (2008). https://doi.org/10.1007/s10573-008-0002-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0002-4

Key words

Navigation