Combustion, Explosion, and Shock Waves

, Volume 43, Issue 5, pp 587–589 | Cite as

Solid-state detonation velocity limits

  • S. S. Batsanov
  • Yu. A. Gordopolov


The ranges of solid-state detonation velocities are estimated, based on the volume velocity of sound in the reacting mixture (lower limit) and the wave velocity corresponding to the pressure of polymorphic transformation of the product with formation of a more dense phase (upper limit). The latter values are consistent with gas-dynamic estimates of detonation velocities and correlate with detonation velocities of typical high explosives.

Key words

solid-state detonation shock adiabats of mixtures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Bennett and Y. Horie, “Shock-induced inorganic reactions and condensed phase detonations,” Shock Waves, 4, No. 3, 127–136 (1994).MATHCrossRefGoogle Scholar
  2. 2.
    Yu. A. Gordopolov, V. S. Trofimov, and A. G. Merzhanov, “Possibility of gasless detonation of condensed systems,” Dokl. Ross. Akad. Nauk, Fiz., 341, No. 3, 327–329 (1995).Google Scholar
  3. 3.
    D. L. Guriev, Y. A. Gordopolov, S. S. Batsanov, et al., “Solid-state detonation in the zinc-sulfur system,” Appl. Phys. Lett., 88, 024102 (2006).Google Scholar
  4. 4.
    S. S. Batsanov, Effects of Explosions on Materials, Springer-Verlag, New York (1994).Google Scholar
  5. 5.
    S. S. Batsanov, “Changes in the nature of chemical bonding during compression of crystals,” Zh. Str. Khim., 46, No. 2, 314–322 (2005).Google Scholar
  6. 6.
    A. Yu. Dolgoborodov, I. M. Voskoboinikov, M. F. Gogulya, and I. K. Tolstov, “Decay of shock waves in mixtures of magnesium and aluminum with oxides,” in: Proc. Vth All-Union Workshop on Detonation, Krasnoyarsk, August 5–12 (1991), pp. 140–144.Google Scholar
  7. 7.
    C. Narayana, V. J. Nesamony, and A. L. Ruo., “Phase transformation of BeS and equation-of state studies to 96 GPa,” Phys. Rev., B56, No. 22, 14338–14343 (1997).Google Scholar
  8. 8.
    T. Mashimo, “Shock-induced phase transition and EOS of some topical compounds,” New Diamond Front. Carbon Technol., 13, No. 3, 143–152 (2003).Google Scholar
  9. 9.
    S. S. Batsanov, Structural Chemistry. Facts and Dependences [in Russian], Dialog-MGU, Moscow (2000).Google Scholar
  10. 10.
    S. N. Tolbert and A. P. Alivisatos, “The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure,” J. Chem. Phys., 102, No. 11, 4642–4656 (1995).CrossRefADSGoogle Scholar
  11. 11.
    J. Z. Jiang, L. Gerward, D. Frost, et al., “Grain-size effect on pressure-induced semiconductor-to-metal transition in ZnS,” J. Appl. Phys., 86, No. 11, 6608–6610 (1999).CrossRefADSGoogle Scholar
  12. 12.
    Y. He, J. F. Liu, W. Chen, et al., “High-pressure behavior of SnO2 nanocrystals,” Phys. Rev., B72, No. 21, 212102 (2005).Google Scholar
  13. 13.
    L. G. Bolkhovitinov and S. S. Batsanov, “Theory of solid-state detonation,” Combust., Expl., Shock Waves, 43, No. 2, 219–221 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. S. Batsanov
    • 1
  • Yu. A. Gordopolov
    • 2
  1. 1.Institute of Physicotechnical and Radiotechnical MeasurementsCenter of High Dynamic PressuresMendeleevo
  2. 2.Institute of Structural Macrokinetics and Material ScienceRussian Academy of SciencesChernogolovka

Personalised recommendations