Skip to main content
Log in

Solid-state detonation velocity limits

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The ranges of solid-state detonation velocities are estimated, based on the volume velocity of sound in the reacting mixture (lower limit) and the wave velocity corresponding to the pressure of polymorphic transformation of the product with formation of a more dense phase (upper limit). The latter values are consistent with gas-dynamic estimates of detonation velocities and correlate with detonation velocities of typical high explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Bennett and Y. Horie, “Shock-induced inorganic reactions and condensed phase detonations,” Shock Waves, 4, No. 3, 127–136 (1994).

    Article  MATH  Google Scholar 

  2. Yu. A. Gordopolov, V. S. Trofimov, and A. G. Merzhanov, “Possibility of gasless detonation of condensed systems,” Dokl. Ross. Akad. Nauk, Fiz., 341, No. 3, 327–329 (1995).

    Google Scholar 

  3. D. L. Guriev, Y. A. Gordopolov, S. S. Batsanov, et al., “Solid-state detonation in the zinc-sulfur system,” Appl. Phys. Lett., 88, 024102 (2006).

    Google Scholar 

  4. S. S. Batsanov, Effects of Explosions on Materials, Springer-Verlag, New York (1994).

    Google Scholar 

  5. S. S. Batsanov, “Changes in the nature of chemical bonding during compression of crystals,” Zh. Str. Khim., 46, No. 2, 314–322 (2005).

    Google Scholar 

  6. A. Yu. Dolgoborodov, I. M. Voskoboinikov, M. F. Gogulya, and I. K. Tolstov, “Decay of shock waves in mixtures of magnesium and aluminum with oxides,” in: Proc. Vth All-Union Workshop on Detonation, Krasnoyarsk, August 5–12 (1991), pp. 140–144.

  7. C. Narayana, V. J. Nesamony, and A. L. Ruo., “Phase transformation of BeS and equation-of state studies to 96 GPa,” Phys. Rev., B56, No. 22, 14338–14343 (1997).

    Google Scholar 

  8. T. Mashimo, “Shock-induced phase transition and EOS of some topical compounds,” New Diamond Front. Carbon Technol., 13, No. 3, 143–152 (2003).

    Google Scholar 

  9. S. S. Batsanov, Structural Chemistry. Facts and Dependences [in Russian], Dialog-MGU, Moscow (2000).

    Google Scholar 

  10. S. N. Tolbert and A. P. Alivisatos, “The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure,” J. Chem. Phys., 102, No. 11, 4642–4656 (1995).

    Article  ADS  Google Scholar 

  11. J. Z. Jiang, L. Gerward, D. Frost, et al., “Grain-size effect on pressure-induced semiconductor-to-metal transition in ZnS,” J. Appl. Phys., 86, No. 11, 6608–6610 (1999).

    Article  ADS  Google Scholar 

  12. Y. He, J. F. Liu, W. Chen, et al., “High-pressure behavior of SnO2 nanocrystals,” Phys. Rev., B72, No. 21, 212102 (2005).

    Google Scholar 

  13. L. G. Bolkhovitinov and S. S. Batsanov, “Theory of solid-state detonation,” Combust., Expl., Shock Waves, 43, No. 2, 219–221 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 5, pp. 104–106, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S., Gordopolov, Y.A. Solid-state detonation velocity limits. Combust Explos Shock Waves 43, 587–589 (2007). https://doi.org/10.1007/s10573-007-0079-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-007-0079-1

Key words

Navigation