Combustion, Explosion, and Shock Waves

, Volume 43, Issue 2, pp 176–187 | Cite as

Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites

  • M. A. Korchagin
  • D. V. Dudina


A new method is developed for obtaining powder nanocomposites consisting of a metallic or intermetallic matrix and ceramic nanometer particles as a reinforcing phase. This method involves the following consecutive processes: short-time mechanical activation of the mixture of powder reagents in a high-energy planetary ball mill, self-propagating high-temperature synthesis, and additional mechanical activation of the synthesis products. Specific features of the reinforcing phase synthesis in matrices are examined by an example of TiB2-Cu and TiB2-TiNi systems. Compaction conditions that allow obtaining volume nanostructural materials with high strength characteristics are found.

Key words

SHS mechanical activation nanocomposites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Sergeev, “Nanochemistry of metals,” Usp. Khim., 70, No. 10, 915–933 (2001).Google Scholar
  2. 2.
    A. L. Buchachenko, “Chemistry at the edge of centuries: achievements and prospects,” Usp. Khim., 68, No. 2, 99–118 (1999).Google Scholar
  3. 3.
    S. P. Gubin, “What is a nanoparticle? Trends of development of nanochemistry and nanotechnologies,” Ross. Khim. Zh., 44, No. 6, 23–31 (2000).Google Scholar
  4. 4.
    J. W. Kaczmar, K. Pietrzak, and W. Wlosinski, “The production and application of metal matrix composite materials,” J. Mater. Sci. Process. Technol., 106, 58–67 (2000).CrossRefGoogle Scholar
  5. 5.
    Xinghong Zhang, Changqing Hong, Jiecai Han, and Hexin Zhang, “Microstructure and mechanical properties of TiB2/(Cu, Ni) interpenetrating phase composites,” Scripta Materialia, 55, 565–568 (2006).CrossRefGoogle Scholar
  6. 6.
    P. C. Maity and S. C. Panigrahi, “Metal and intermetallic matrix in situ particle composites,” Key Eng. Mater., 104–107, 313–328 (1995).CrossRefGoogle Scholar
  7. 7.
    A. R. Kennedy, A. E. Karantzalis, and S. M. Wyatt, “The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites,” J. Mater. Sci., 34, 933–940 (1995).CrossRefGoogle Scholar
  8. 8.
    T. Weissgaerber, C. Sauer, and B. Kieback, “Nanodispersion-strengthened metallic materials,” in: Nanostructured Materials, Proc. of the 1st Korea-Germany Joint Seminar, Ulsan (2004), pp. 187–195.Google Scholar
  9. 9.
    Yu. V. Baikalova and O. I. Lomovsky, “Solid-state synthesis of tungsten carbide in an inert copper matrix,” J. Alloys Comp., 297, 87–91 (2000).CrossRefGoogle Scholar
  10. 10.
    N. Travitzky, P. Kumar, K. H. Sandhage, et al., “In-situ synthesis of Al2O3 reinforced Ni-based composites,” Adv. Eng. Mater., 5, No. 4, 256–259 (2003).CrossRefGoogle Scholar
  11. 11.
    J. P. Tu, N. Y. Wang, Y. Z. Yang, et al., “Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing,” Mater. Lett., 52, 448–452 (2002).CrossRefGoogle Scholar
  12. 12.
    W. H. Jiang, J. Fei, and X. L. Han, “Synthesis of titanium and tungsten carbides in iron matrixes,” J. Mater. Sci. Lett., 20, 283–284 (2001).CrossRefGoogle Scholar
  13. 13.
    S. Dallaire and J.-G. Legoux, “Synthesis of TiB2 in liquid copper,” Mater. Sci. Eng. A, 183, Nos. 1–2, 139–144 (1994).Google Scholar
  14. 14.
    J. Lee, J. Y. Jung, E.-S. Lee, et al., “Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming,” Mater. Sci. Eng. A, 277, Nos. 1–2, 274–283 (2000).Google Scholar
  15. 15.
    C. C. Leong, L. Lu, J. Y. H. Fuh, and Y. S. Wong, “In-situ formation of copper matrix composites by laser sintering,” Mater. Sci. Eng. A, 338, Nos. 1–2, 81–88 (2002).Google Scholar
  16. 16.
    V. A. Polyboyarov, Z. A. Korotaeva, M. A. Korchagin, et al., “Application of mechanically activated finely disperse ceramic powders for improving properties of metals and alloys,” Nauka Proizvodstvu, No. 2(52), 2–8 (2002).Google Scholar
  17. 17.
    I. Gotman, M. J. Koczak, and E. Shtessel, “Fabrication of Al matrix in situ composites via self-propagating synthesis,” J. Mater. Sci. Eng. A, 187, No. 2, 189–199 (1994).CrossRefGoogle Scholar
  18. 18.
    Q. Xu, X. Zhang, J. Han, et al., “Combustion synthesis and densification of titanium diboride-copper matrix composite,” Mater. Lett., 57, 4439–4444 (2003).CrossRefGoogle Scholar
  19. 19.
    H. C. Yi, T. C. Woodger, J. J. Moore, and J. Y. Guigne, “Combustion synthesis of HfB2-Al composites,” Metall. Mater. Trans. B, 29, 877–887 (1998).Google Scholar
  20. 20.
    X. Zhang, X. He, J. Han, et al., “Combustion synthesis and densification of large-scale TiC-xNi cermets,” Mater. Lett., 56, 183–187 (2002).Google Scholar
  21. 21.
    Z. Y. Fu, H. Wang, W. M. Wang, and R. Z. Yuan, “Composites fabricated by self-propagating high-temperature synthesis,” J. Mater. Process. Technol., 137, 30–34 (2003).CrossRefGoogle Scholar
  22. 22.
    A. N. Pityulin, “Forced compacting in SHS processes,” in: Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Territoriya, Chernogolovka (2001), pp. 333–353.Google Scholar
  23. 23.
    A. S. Rogachev and V. I. Ponomarev, “Phase and structure formation in SHS processes,” ibid., p. 94–121.Google Scholar
  24. 24.
    A. E. Sychev and A. G. Merzhanov, “Self-propagating high-temperature synthesis of nanomaterials,” Usp. Khim., 73, No. 2, 157–170 (2004).Google Scholar
  25. 25.
    S. J. Dong, Y. Zhou, Y. W. Shi, and B. H. Chang, “Formation of a TiB2-reinforced copper-based composite by mechanical alloying and hot pressing,” Metall. Mater. Trans. A, 33, No. 4, 1275–1280 (2002).Google Scholar
  26. 26.
    C. Biselli, D. G. Morris, and N. Randall, “Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 disperses particles,” Scripta Metall. Mater., 30, No. 10, 1327–1332 (1994).CrossRefGoogle Scholar
  27. 27.
    E. Yuasa, T. Morooka, R. Laag, et al., “Microstructural changes of Cu-Ti-B powders during mechanical alloying,” Powder Metall., 35, No. 2, 120 (1992).Google Scholar
  28. 28.
    D. Wexler, A. Fenwick, and A. Calca, “Influence of milling mechanism on synthesis of TiB2 and TiB/TiB2 composites,” J. Metastable Nanocrystall. Mater., 15–16, 199–204 (2003).Google Scholar
  29. 29.
    D. Y. Ying and D. L. Zhang, “Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling,” Mater. Sci. Eng. A, 286, No. 1, 152–156 (2000).CrossRefGoogle Scholar
  30. 30.
    G. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., 46, 1–184 (2000).CrossRefMathSciNetGoogle Scholar
  31. 31.
    A. D. Pomogailo, A. S. Rosenberg, and U. E. Ufland, Metal Nanoparticles Embedded in Polymers [in Russian], Khimiya, Moscow (2000).Google Scholar
  32. 32.
    D. V. Dudina, O. I. Lomovsky, M. A. Korchagin, et al., “Application of methods of mechanical processing for in-situ synthesis of the TiB2-Cu nanocomposite,” in: Physics and Chemistry of Finely Disperse (Nano-) Systems, Proc. VI All-Russia (Int.) Conf., Moscow Inst. Eng. Phys., Moscow (2002), pp. 145–148.Google Scholar
  33. 33.
    P. Yih and D. D. L. Chung, “Titanium diboride copper-matrix composites,” J. Mater. Sci., 32, 1703–1709 (1997).CrossRefGoogle Scholar
  34. 34.
    E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, “Planetary mill,” Author’s Certificate No. 975068 (USSR), Bull. Izobr., No. 43 (1982).Google Scholar
  35. 35.
    A. G. Merzhanov, Solid-Flame Combustion [in Russian], ISMAN, Chernogolovka (2000).Google Scholar
  36. 36.
    H. L. Schick, Thermodynamics of Certain Refractory Compounds, Academic Press, New York-London (1966).Google Scholar
  37. 37.
    M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition,” Combust., Expl., Shock Waves, 39, No. 1, 43–50 (2003).CrossRefGoogle Scholar
  38. 38.
    A. S. Usmanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, Radiography, and Electron Microscopy [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  39. 39.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Obtained under Intense Plastic Strains [in Russian], Logos, Moscow (2000).Google Scholar
  40. 40.
    R. Z. Valiev, “Development of methods involving intense plastic strain for obtaining volume nanostructural materials with unique properties,” in: Physics and Chemistry of Finely Disperse (Nano-) Systems, Proc. VI All-Russia (Int.) Conf., Moscow Inst. Eng. Phys., Moscow (2002), p. 149.Google Scholar
  41. 41.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Krieger, New York (1977).Google Scholar
  42. 42.
    N. P. Lyakishev (ed.), State Diagrams of Binary Metal Systems: Handbook [in Russian], Vol. 2, Mashinostroenie, Moscow (1996–2000), pp. 337–341.Google Scholar
  43. 43.
    A. E. Vol, in: N. V. Ageev (ed.), Structure and Properties of Binary Metallic Systems [in Russian], Gos. Izdat. Fiz.-Mat. Lit., Moscow (1959), Vol. 1, pp. 701–703.Google Scholar
  44. 44.
    T. I. Serebryakova, V. A. Neronov, and P. D. Peshev, High-Temperature Borides [in Russian], Metallurgiya, Moscow (1991).Google Scholar
  45. 45.
    A. V. Dobromyslov, R. V. Churbaev, and V. A. El’kin, “Mechanical alloying of alloys of the titanium-copper system under high pressures,” Fiz. Metal. Metalloved., 87, No. 2, 59–64 (1999).Google Scholar
  46. 46.
    D. McLean, Mechanical Properties of Metals, Robert E. Krieger, Huntington-New York (1977).Google Scholar
  47. 47.
    V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallide Compounds [in Russian], Izd. Tomsk. Univ., Tomsk (1989).Google Scholar
  48. 48.
    V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide. Structure and Properties [in Russian], Nauka, Moscow (1992).Google Scholar
  49. 49.
    D. V. Surov, O. I. Lomovsky, M. A. Korchagin, et al., “Cold gasdynamic spraying of nanocomposites produced through mechanochemical method,” in: Nanotechnology and Physics of Nanocrystalline Materials, Abstracts of X Int. Seminar, Ural Division, Russian Acad. of Sci., Ekaterinburg (2005), pp. 17–18.Google Scholar
  50. 50.
    V. E. Panin, M. A. Korchagin, O. I. Lomovsky, et al., “Consolidation and mechanical properties of metal and intermetallic matrix nanocomposites produced using high-energy ball milling,” Phys. Mesomech., 7, No. 2, 44–52 (2004).Google Scholar
  51. 51.
    D. V. Dudina, “Synthesis of titanium diboride in a copper matrix and development of composite materials based on the TiB2-Cu system,” Candidate’s Dissertation in Chemistry, Inst. Solid State Chemistry and Mechanochemistry, Siberian Division, Russian Academy of Sciences, Novosibirsk (2004).Google Scholar
  52. 52.
    N. Z. Lyakhov, V. E. Panin, D. V. Dudina, et al., “Development of structural materials based on nanocomposite powders,” Fiz. Mezomekh., 6, No. 2, 63–76 (2003).Google Scholar
  53. 53.
    D. V. Dudina, O. I. Lomovsky, M. A. Korchagin, and V. I. Mali, “Reactions in the metallic matrix: Synthesis and properties of TiB2-Cu nanocomposites,” Khim. Interes. Ustoich. Razv., No. 12, 319–325 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. A. Korchagin
    • 1
  • D. V. Dudina
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations