Advertisement

Combustion, Explosion, and Shock Waves

, Volume 43, Issue 1, pp 114–123 | Cite as

Numerical study of the transfer of shock-wave loading to a screened flat wall through a layer of a powdered medium and a subsequent air gap

  • O. Yu. Boldyreva
  • A. A. Gubaidullin
  • D. N. Dudko
  • A. G. Kutushev
Article

Abstract

The two-velocity, two-temperature model with two stresses in a mixture of a gas and solid particles contacting each other is used to numerically study the dynamic effect of an air shock wave incoming onto a solid wall with a screening layer of a porous powdered medium at some distance from the wall. The process is described for the case of one-dimensional planar motion of the gaseous and disperse phases under the assumption of a viscoelastic behavior of the powder skeleton. The effect of stepwise shock waves onto the porous powdered screen is considered. The influence of parameters of the screening layer and the air gap on the dynamics of loading of the screened solid wall is analyzed.

Key words

porous medium shock wave air gap screened wall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Gel’fand, S. A. Gubin, S. M. Kogarko, and D. E. Popov, “Investigation of the special characteristics of the propagation and reflection of pressure waves in a porous medium,” J. Appl. Mech. Tech. Phys., 16, No. 6, 897–899 (1975).CrossRefADSGoogle Scholar
  2. 2.
    L. G. Gvozdeva and Yu. M. Faresov, “Interaction of an air shock wave with a wall covered by a porous compressible material,” Pis’ma Zh. Tekh. Fiz., 10, No. 19, 1153–1156 (1984).Google Scholar
  3. 3.
    L. G. Gvozdeva, Yu. M. Faresov, and V. P. Fokeev, “Interaction of air shock waves with porous compressible materials,” J. Appl. Mech. Tech. Phys., 26, No. 3, 401–404 (1985).CrossRefADSGoogle Scholar
  4. 4.
    B. E. Gel’fand, A. V. Gubanov, and E. I. Timofeev, “Interaction of air shock waves with a porous screen,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 79–84 (1983).Google Scholar
  5. 5.
    Yu. M. Faresov and L. G. Gvozdeva, “Experimental study of normal reflection of shock waves from the end face covered by a layer of a porous compressible material,” in: Unsteady Gas Flows with Shock Waves, Proc. All-Union Workshop (Tashkent, Sept. 15–23, 1989), Leningrad (1990), pp. 179–187.Google Scholar
  6. 6.
    L. G. Gvozdeva and Yu. M. Faresov, “Computing parameters of steady shock waves in a porous compressible medium,” Zh. Tekh. Fiz., 55, No. 4, 773–775 (1985).Google Scholar
  7. 7.
    G. Rudinger, “Some effects of finite particle volume on the dynamics of gas-particle mixtures,” AIAA J., 3, No. 7, 1217–1222 (1965).Google Scholar
  8. 8.
    R. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    L. G. Gvozdeva and Yu. M. Faresov, “Approximate calculation of steady-state shock wave parameters in porous compressible materials,” J. Appl. Mech. Tech. Phys., 27, No. 1, 107–111 (1986).CrossRefADSGoogle Scholar
  10. 10.
    L. G. Gvozdeva, V. N. Lyakhov, D. K. Raevskii, and Yu. M. Faresov, “Shock-wave propagation in a gas and a porous medium,” Combust., Expl., Shock Waves, 23, No. 4, 491–494 (1987).CrossRefGoogle Scholar
  11. 11.
    B. E. Gel’fand, S. P. Medvedev, A. N. Polenov, and S. M. Frolov, “Effect of a porous compressible coating on the character of shock-wave loading of structures,” Zh. Tekh. Fiz., 57, No. 4, 831–833 (1987).Google Scholar
  12. 12.
    B. E. Gel’fand, S. P. Medvedev, A. N. Polenov, and S. M. Frolov, “Transmission of a shock load by bulk media,” J. Appl. Mech. Tech. Phys., 29, No. 2, 268–273 (1988).CrossRefADSGoogle Scholar
  13. 13.
    B. E. Gelfand, S. P. Medvedev, A. A. Borisov, et al., “Shock loading of stratified dusty system,” Arch. Combust., 9, Nos. 1/4, 153–165 (1989).Google Scholar
  14. 14.
    M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid 2. Higher frequency range,” J. Acoust. Soc. Amer., 28, No. 2, 179–191 (1956).CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid 1. Low frequency range,” ibid., pp. 169–178.Google Scholar
  16. 16.
    G. Ben-Dor, A. Britan, T. Elperin, et al., “Experimental investigation of the interaction between weak shock waves and granular layers,” Exp. Fluids, 22, 432–443 (1997).CrossRefGoogle Scholar
  17. 17.
    A. Britan, G. Ben-Dor, T. Elperin, et al., “Mechanism of compressive stress formation during weak shock waves impact with granular materials,” ibid., pp. 507–518.Google Scholar
  18. 18.
    A. Britan, G. Ben-Dor, T. Elperin, et al., “Gas filtration during the impact of weak shock waves on granular layers,” Int. J. Multiphase Flow, 23, No. 3, 473–491 (1997).CrossRefMATHGoogle Scholar
  19. 19.
    A. Levy, “Shock waves interaction with granular materials,” Powder Technol., 103, 212–219 (1999).CrossRefGoogle Scholar
  20. 20.
    A. Levy, G. Ben-Dor, and S. Sorek, “Numerical investigation of the propagation of shock waves in rigid porous materials: development of the computer code and comparison with experimental results,” J. Fluid Mech., 324, 163–179 (1996).CrossRefADSMATHGoogle Scholar
  21. 21.
    A. G. Kutushev and D. A. Rudakov, “Numerical study of the action of a shock wave on an obstacle screened by a layer of porous powder material,” J. Appl. Mech. Tech. Phys., 34, No. 5, 618–624 (1993).CrossRefADSGoogle Scholar
  22. 22.
    A. G. Kutushev and S. P. Rodionov, “Numerical study of the effect of the parameters of a bulk layer and an incident shock wave on the pressure at a shielded flat wall,” Combust., Expl., Shock Waves, 35, No. 2, 206–213 (1999).Google Scholar
  23. 23.
    A. G. Kutushev, Mathematical Modeling of Wave Processes in Aerodisperse and Powdered Media [in Russian], Nedra, St. Petersburg (2003).Google Scholar
  24. 24.
    A. G. Kutushev and S. P. Rodionov, “Interaction of weak shock waves with a layer of a powdered medium,” Combust., Expl., Shock Waves, 36, No. 3, 405–413 (2000).Google Scholar
  25. 25.
    A. A. Gubaidullin and S. F. Urmancheev, “Transition of compression waves from a liquid or a gas to a saturated porous medium and their reflection from targets,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 105, Inst. Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1992), pp. 122–128.Google Scholar
  26. 26.
    A. A. Gubaidullin and S. F. Urmancheev, “Compression waves in porous media saturated by a gas,” in: Proc. 1st Russian National Conf. on Heat Transfer, Vol. 7, Moscow Institute of Power Engineering, Moscow (1994), pp. 71–77.Google Scholar
  27. 27.
    A. A. Gubaidullin and D. N. Dudko, “Interaction of compression waves with targets in a porous medium saturated by a gas,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 112, Inst. Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1997), pp. 113–118.Google Scholar
  28. 28.
    A. A. Gubaidullin and D. N. Dudko, “Processes of propagation and interaction of shock waves with obstacles in gas-saturated porous media,” in: Biot Conf. on Poromechanics, Louvain-la-Neuve, Belgium (1998), pp. 217–220.Google Scholar
  29. 29.
    A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, “Modeling of the interaction between an air shock wave and a porous screen,” Combust., Expl., Shock Waves, 36, No. 4, 496–505 (2000).Google Scholar
  30. 30.
    A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, “Effect of air shock waves on targets covered by a porous layer,” Vychisl. Tekhnol., 6, No. 3, 7–20 (2001).Google Scholar
  31. 31.
    A. A. Gubaidullin, A. Britan, and D. N. Dudko, “Air shock wave interaction with an obstacle covered by porous material,” Shock Waves, 13, No. 1, 41–48 (2003).CrossRefADSMATHGoogle Scholar
  32. 32.
    A. A. Gubaidullin and D. N. Dudko, “Modelling of the impact of air shock wave on obstacle covered by porous screen,” Comput. Mech., 31, No. 6, 453–460 (2003).CrossRefMATHGoogle Scholar
  33. 33.
    P. S. Gough and F. J. Zwartst, “Modeling heterogeneous two-phase reacting flow,” AIAA J., 17, No. 1, 17–25 (1979).CrossRefMATHADSGoogle Scholar
  34. 34.
    A. G. Kutushev and D. A. Rudakov, “Mathematical modeling of the dynamic loading of a layer of a porous powdered medium by a compressed gas,” Mat. Model., 3, No. 11, 65–75 (1991).Google Scholar
  35. 35.
    N. D. Musaev, “On two-velocity mechanics of granular porous media,” Prikl. Mat. Mekh., 49, No. 2, 334–336 (1985).Google Scholar
  36. 36.
    A. V. Fedorov and V. M. Fomin, “Theory of a combined discontinuity in gas mixtures,” in: Physical Gas Dynamics of Reacting Media [in Russian], Nauka, Novosibirsk (1990), pp. 128–134.Google Scholar
  37. 37.
    A. V. Fedorov, “Structure of a combination discontinuity in gas suspensions in the presence of random pressure from particles,” J. Appl. Mech. Tech. Phys., 33, No. 5, 648–652 (1992).CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    A. I. Ivandaev, A. G. Kutushev, and D. A. Rudakov, “Numerical investigation of throwing a powder layer by a compressed gas,” Combust., Expl., Shock Waves, 31, No. 4, 459–465 (1995).CrossRefGoogle Scholar
  39. 39.
    D. V. Sadin, “Numerical study of initial pulsed motion of a powder layer in a duct under the action of a compressed gas,” J. Appl. Mech. Tech. Phys., 40, No. 6, 1106–1110 (1999).CrossRefADSGoogle Scholar
  40. 40.
    R. I. Nigmatulin, Dynamics of Multiphase Media, Part 1, Hemisphere Publ., New York (1991).Google Scholar
  41. 41.
    S. Ergun, “Fluid flow through packed columns,” Chem. Eng. Progress, 48, No. 2, 89–94 (1952).Google Scholar
  42. 42.
    A. F. Chudnovskii, Heat Transfer in Disperse Media [in Russian], Gostekhizdat, Moscow (1954).Google Scholar
  43. 43.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford-New York (1966).Google Scholar
  44. 44.
    Kh. S. Kestenboim, G. S. Roslyakov, and L. A. Chudov, Point Explosion. Computation Methods. Tables [in Russian], Nauka, Moscow (1974).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • O. Yu. Boldyreva
    • 1
  • A. A. Gubaidullin
    • 1
  • D. N. Dudko
    • 1
  • A. G. Kutushev
    • 1
  1. 1.Tyumen’ Department of the Khristianovich Institute of Theoretical and Applied Mechanics, Siberian DivisionRussian Academy of SciencesTyumen’

Personalised recommendations