Advertisement

Combustion, Explosion and Shock Waves

, Volume 42, Issue 6, pp 746–752 | Cite as

Nonclassical regimes of wave diffraction in combustible mixtures

  • A. A. Vasil’ev
  • M. S. Drozdov
  • S. G. Khidirov
Open Access
Article

Abstract

Experimental and numerical results of investigating the diffraction of combustion and detonation waves, including the diffraction in unsteady deflagration-to-detonation transition regimes, are presented.

Key words

combustion, detonation deflagration-to-detonation transition wave diffraction critical diffraction diameter criterion of diffraction re-initiation 

References

  1. 1.
    C. Campbell, “The propagation of explosion waves in gases contained in tubes of varying cross-section,” J. Chem. Soc., 2483–2498 (1922).Google Scholar
  2. 2.
    P. Laffitte, “On the propagation of a spherical explosion wave,” Com. Rend. Acad. Sci., 177, 178–180 (1923).Google Scholar
  3. 3.
    Ya. B. Zel’dovich, S. M. Kogarko, and N. N. Simonov, “Experimental study of spherical gas detonation,” Zh. Tekh. Fiz., 26, No. 8, 1744–1769 (1956).Google Scholar
  4. 4.
    B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation Front Structure in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).Google Scholar
  5. 5.
    V. V. Mitrofanov and R. I. Soloukhin, “Diffraction of a multifront detonation wave,” Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).Google Scholar
  6. 6.
    S. M. Kogarko, “Possibility of detonation of gas mixtures in conical tubes,” Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 4, 419–426 (1956).Google Scholar
  7. 7.
    R. A. Strehlow, A. A. Adamczyk, and R. J. Stiles, “Transient studies of detonation waves,” Astronaut. Acta, 17, Nos. 4–5, 509–527 (1972).Google Scholar
  8. 8.
    R. A. Strehlow and R. J. Salm, “The failure of marginal detonations in expanding channels,” Acta Astronaut., 3, No. 11, 983–994 (1976).CrossRefGoogle Scholar
  9. 9.
    D. H. Edwards, G. O. Thomas, and M. A. Nettleton, “The diffraction of a planar detonation wave at an abrupt area change,” J. Fluid Mech., 95, No. 1, 79–96 (1979).CrossRefADSGoogle Scholar
  10. 10.
    A. A. Vasil’ev and V. V. Grigor’ev, “Critical conditions for gas detonation in sharply expanding channels,” Combust., Expl., Shock Waves, 16, No. 5, 579–585 (1980).CrossRefGoogle Scholar
  11. 11.
    R. Knystautas, J. H. S. Lee, and C. M. Guirao, “The critical tube diameter for detonation failure in hydrocarbon-air mixtures,” Combust. Flame, 48, 63–83 (1982).CrossRefGoogle Scholar
  12. 12.
    D. Desbordes and M. Vachon, “Critical diameter of diffraction for strong plane detonations,” in: J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 106: Dynamics of Explosion, New York (1986), pp. 131–143.Google Scholar
  13. 13.
    W. B. Benedick, R. Knystautas, and J. H. Lee, “Large-scale experiments on the transmission of fuel-air detonations from two-dimensional channels,” in: I. R. Bowen, N. Manson, A. K. Oppenheim, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 94: Dynamics of Shock Waves, Explosions and Detonations, New York (1983), pp. 546–556.Google Scholar
  14. 14.
    Y. K. Liu, J. H. Lee, and R. Knystautas, “Effect of geometry on the transmission of detonation through an orifice,” Combust. Flame, 56, 215–225 (1984).CrossRefGoogle Scholar
  15. 15.
    J. O. Moen, A. Sulmistras, G. O. Thomas, et al., “The influence of cellular regularity on the behaviour of gaseous detonations,” in: J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 106: Dynamics of Explosion, New York (1986), pp. 220–243.Google Scholar
  16. 16.
    A. A. Vasil’ev, “Initiation of a gas detonation with a spatial source distribution,” Combust., Expl., Shock Waves, 24, No. 2, 232–237 (1988).CrossRefGoogle Scholar
  17. 17.
    A. A. Vasil’ev, “Spatial excitation of a multifront detonation,” Combust., Expl., Shock Waves, 25, No. 1, 104–108 (1989).CrossRefGoogle Scholar
  18. 18.
    A. A. Vasil’ev, “Gas detonation propagation with simultaneous change in tube section and mixture composition,” Combust., Expl., Shock Waves, 21, No. 2, 262–265 (1985).CrossRefGoogle Scholar
  19. 19.
    N. V. Bannikov and A. A. Vasil’ev, “Plane initiation of a detonation,” Combust., Expl., Shock Waves, 29, No. 3, 409–414 (1993).Google Scholar
  20. 20.
    A. A. Vasil’ev, “Near-critical regimes of gas detonation,” Doct. Dissertation in Phys.-Math. Sci., Inst. of Hydrodynamics, Sib. Div., Russian Acad. of Sci. (1995).Google Scholar
  21. 21.
    A. A. Vasil’ev, “Modes of a detonation and high-speed burning in channels with perforated walls,” in: V. Molkov (ed.), Fire-and-Explosion Hazard of Substances and Venting of Deflagrations, Proc. of the Second Int. Seminar, Inst. for Fire Protection, Moscow (1998), pp. 582–592.Google Scholar
  22. 22.
    A. A. Vasil’ev et al., “The basic results of reinitiation processes in diffracting multifront detonations. Part I,” Eurasian Chem.-Technol. J., 5, No. 4 (2003).Google Scholar
  23. 23.
    K. Hiramatsu, T. Fujiwara, and S. Taki, “A computational study of transmission of gaseous detonation to unconfined space,” in: Proc. 20th Symp. (Int.) on Combustion, Pittsburgh (1984).Google Scholar
  24. 24.
    M. Fisher, E. Pantow, and T. Kratzel, “Propagation, decay and re-ignition of detonations in technical structures,” in: G. Roy, S. Frolov, K. Kailasanath, and N. Smirnov (eds.), Gaseous and Heterogeneous Detonations. Science to Applications, ENAS Publ., Moscow (1999), pp. 197–212.Google Scholar
  25. 25.
    B. Khasainov, C. Priault, H.-N. Presles, and D. Desbordes, “On the mechanism of transition of self-sustained detonation from a tube to a half-space through an annular orifice with central obstacle,” in: Proc. 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (July 29–August 03, 2001, Seattle), Univ. Washington. CD ISBN 0-9711740-0-8, No. 096.Google Scholar
  26. 26.
    A. A. Vasil’ev, A. I. Valishev, V. A. Vasil’ev, and L. V. Panfilova, “Combustion and detonation characteristics of hydrazine and its methyl derivatives,” Combust., Expl., Shock Waves, 36, No. 3, 358–373 (2000).Google Scholar
  27. 27.
    G. Munday, A. R. Ubbelohde, and I. F. Wood, “Marginal detonation in cyanogen/oxygen mixtures,” Proc. Roy. Soc. A, 306, No. 1485, 179–184 (1968).ADSGoogle Scholar
  28. 28.
    S. M. Kogarko, “Pressure at the end of a tube with unsteady fast combustion,” Zh. Tekh. Fiz., 28, No. 9, 2041–2045 (1958).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Vasil’ev
    • 1
  • M. S. Drozdov
    • 2
  • S. G. Khidirov
    • 2
  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirsk
  2. 2.Department of the Institute of Power-Engineering Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka

Personalised recommendations