Advertisement

Combustion, Explosion and Shock Waves

, Volume 42, Issue 6, pp 672–677 | Cite as

Analysis of flame structure by molecular-beam mass spectrometry using electron-impact and synchrotron-photon ionization

  • Ph. R. Westmoreland
  • M. E. Law
  • T. A. Cool
  • J. Wang
  • A. McIlroy
  • C. A. Taatjes
  • N. Hansen
Open Access
Article

Abstract

Molecular-beam mass spectrometry (MBMS) has proven to be a powerful tool for the general analysis of flame structure, providing concentrations of radical and stable species for low-pressure flat flames since the work of Homann and Wagner in the 1960’s. In this paper, we will describe complementary measurements using electron-impact ionization with a high-mass-resolution quadrupole mass spectrometer and vacuum-ultraviolet photoionization in a time-of-flight mass spectrometer. Isomers are resolved that have not been separately detectable before in MBMS studies of flames, including C3H2, C3H4, C4H3, C4H4, C4H5, C6H6, and C2H4O. The qualitative and quantitative results of MBMS have led to advances in modeling and applying flame chemistry.

Key words

flame structure mass spectrometry ionization synchrotron radiation isomers 

References

  1. 1.
    J. C. Biordi, C. P. Lazzara, and J. F. Papp, “Molecular beam mass spectrometry applied to determining the kinetics of reactions in flames. I. Empirical characterization of flame perturbation by molecular beam sampling probes,” Combust. Flame, 23, 73 (1974).CrossRefGoogle Scholar
  2. 2.
    I. R. Slagle, J.-Y. Park, M. C. Heaven, and D. Gutman, “Kinetics of polyatomic free radicals produced by laser photolysis. 3. Reaction of vinyl radicals,” J. Amer. Chem. Soc., 106, No. 16, 4356 (1984).CrossRefGoogle Scholar
  3. 3.
    A. McIlroy, T. D. Hain, H. A. Michelsen, and T. A. Cool, “A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames,” Proc. Combust. Inst., 1647–1653 (2000).Google Scholar
  4. 4.
    T. A. Cool, A. McIlroy, P. R. Westmoreland, et al., “A photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source,” Rev. Sci. Instrum., 76, 094102-1–094102-7 (2005).Google Scholar
  5. 5.
    A. Bhargava and P. R. Westmoreland, “Measured flame structure and kinetics in a fuel-rich ethylene flame,” Combust. Flame, 113, 333–347 (1998).CrossRefGoogle Scholar
  6. 6.
    S. G. Lias, “Ionization energy evaluation,” in: P. J. Linstrom, W. G. Mallard (eds.), Chemistry WebBook, Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (2005); http://webbook.nist.gov.Google Scholar
  7. 7.
    T. A. Cool, K. Nakajima, T. A. Mostefaoui, et al., “Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry,” J. Chem. Phys., 119, No. 16, 8356–8365 (2003).CrossRefADSGoogle Scholar
  8. 8.
    C. A. Taatjes, S. J. Klippenstein, N. Hansen, et al., “Synchrotron photoionization measurements of combustion intermediates: photoionization efficiency of C3H2 isomers,” Phys. Chem. Chem. Phys., 7, 806–813 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ph. R. Westmoreland
    • 1
  • M. E. Law
    • 1
  • T. A. Cool
    • 2
  • J. Wang
    • 2
  • A. McIlroy
    • 3
  • C. A. Taatjes
    • 3
  • N. Hansen
    • 3
  1. 1.Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstUSA
  2. 2.School of Applied and Engineering PhysicsCornell UniversityIthacaUSA
  3. 3.Sandia National LaboratoriesCombustion Research FacilityLivermoreUSA

Personalised recommendations