Advertisement

Combustion, Explosion and Shock Waves

, Volume 42, Issue 5, pp 543–548 | Cite as

Activated combustion of a silicon—carbon mixture in nitrogen and SHS of Si3N4—SiC composite ceramic powders and silicon carbide

  • G. L. Khachatryan
  • A. B. Arutyunyan
  • S. L. Kharatyan
Article

Abstract

It is established that Si3N4—SiC composites with a mass content of SiC 5–60% and a dominating content of the β-modification of silicon nitride can be produced by interaction of the components in the Si—C—N2 system in the combustion regime. It is found that the fraction of α-Si3N4 can be increased by diluting the starting mixture with the end products, but this leads to the occurrence of a certain amount of unreacted silicon in the products. It is shown that the use of chemical activation allows one to perform a single-stage synthesis of Si3N4—SiC composites with any contents of the individual components (from 0 to 100%), including pure carbide silicon.

Key words

solid phase combustion chemical activation silicon carbide silicon nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kodama, T. Suzuki, H. Sakamoto, and T. Miyoshi, “Toughening of silicon nitride matrix composites by the addition of both silicon carbide whiskers and silicon carbide particles,” J. Amer. Ceram. Soc., 73, No. 3, 678–683 (1990).CrossRefGoogle Scholar
  2. 2.
    C. D. Jia, Y. Zhou, and C. T. Lei, “Thermal shock resistance of SiC whisker reinforced Si3N4 ceramic composites,” Ceram. Int., 22, No. 2, 107–112 (1996).CrossRefGoogle Scholar
  3. 3.
    P. D. Shalek, J. J. Petrovic, G. F. Hurley, and F. D. Gae, “Hot-pressed SiC whisker/Si3N4 matrix composites,” Amer. Ceram. Soc. Bull., 65, No. 2, 351–56 (1986).Google Scholar
  4. 4.
    Y. Goto and A. Tsuge, “Mechanical properties of unidirectionally oriented SiC-whisker-reinforced Si3N4 fabricated by extrusion and hot-pressing,” J. Amer. Seram. Soc., 76, No. 6, 1420–1424 (1990).CrossRefGoogle Scholar
  5. 5.
    A. G. Merzhanov, “Self-propagating high-temperature synthesis: Twenty years of search and findings,” in: Z. A. Munir and J. B. Holt, et al. (eds.), Combustion and Plasma Synthesis of High-Temperature Materials, VCH, New York (1990), pp. 1–53.Google Scholar
  6. 6.
    A. G. Merzhanov, “History and recent developments in SHS,” Ceram. Int., 21, 371–379 (1995).CrossRefGoogle Scholar
  7. 7.
    R. Pampuch, L. Stobierski, and J. Lis, “Synthesis of sinterable β-SiC powder by a solid combustion method,” J. Amer. Ceram. Soc., 72, No. 8, 1434 (1989).CrossRefGoogle Scholar
  8. 8.
    A. Feng and Z. A. Munir, “The effect of an electric field on self-sustaining combustion synthesis: Part II. Field-assisted self-propagating synthesis of α-SiC,” J. Appl. Phys., 76, No. 3, 1927–1928 (1994).CrossRefADSGoogle Scholar
  9. 9.
    J. A. Puszynski and S. Miao, “Chemically-assisted combustion synthesis of silicon carbide from elemental powders,” in: J. P. Sigh (ed.), Innovative Processes/Synthesis: Ceramics, Glasses, Composites II, Amer. Ceram. Soc., Westerville (1998), pp. 13–21.Google Scholar
  10. 10.
    O. Yamada, K. Hiero, M. Koizumi, and Y. Miyamoto, “Combustion synthesis of silicon carbide in nitrogen atmosphere,” J. Amer. Ceram. Soc., 72, No. 9, 1735–1738 (1989).CrossRefGoogle Scholar
  11. 11.
    Ch. C. Agrafiotis, J. Lis, J. A. Puszynski, and V. Hlavacek, “Combustion synthesis of silicon nitride—silicon carbide composites,” J. Amer. Ceram. Soc., 73, No. 11, 3214–3517 (1990).CrossRefGoogle Scholar
  12. 12.
    D. Kata, J. Lis, and R. Pumpuch, “Combustion synthesis of multiphase powders in the Si— C—N system,” Solid State Ionics, 101–103, 65–70 (1997).Google Scholar
  13. 13.
    G. G. Gnesin and I. I. Osipova, “Silicon nitride and materials based on it,” in: Studies of Nitrides [in Russian], Kiev (1975).Google Scholar
  14. 14.
    G. A. Nersisyan, V. N. Nikogosov, S. L. Kharatyan, and A. G. Merzhanov, “Chemical transformation mechanism and combustion regimes in the system silicon—carbon—fluoroplastic,” Combust., Expl., Shock Waves, 27, No. 6, 720–724 (1991).CrossRefGoogle Scholar
  15. 15.
    S. L. Kharatyan and H. H. Nersisyan, “Combustion synthesis of silicon carbide under oxidative activation conditions,” Int. J. SHS, 3, No. 1, 17–25 (1994).Google Scholar
  16. 16.
    J. Zhang, J. C. Jeong, J. H. Lee, et al., “The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction,” Mater. Res. Bull., 37, 319–329 (2002).CrossRefGoogle Scholar
  17. 17.
    S. L. Kharatyan, Kh. V. Manukyan, H. H. Nersisyan, and H. L. Khachatryan, “Macrokinetic laws of activated combustion of silicon nitride-based composite powders,” Int. J. SHS, 12, No. 1, 19–34 (2003).Google Scholar
  18. 18.
    J. A. Puszynski and S. Miao, “Kinetic study of synthesis of sic powders and whiskers in presence of KClO3 and teflon,” Int. J. SHS, 8, No. 3, 265–275 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • G. L. Khachatryan
    • 1
    • 2
  • A. B. Arutyunyan
    • 1
  • S. L. Kharatyan
    • 1
    • 2
  1. 1.Nalbandyan Institute of Chemical PhysicsNational Academy of SciencesYerevanRepublic of Armeniya
  2. 2.Yerevan State UniversityYerevanRepublic of Armenia

Personalised recommendations