Advertisement

Combustion, Explosion and Shock Waves

, Volume 42, Issue 2, pp 231–236 | Cite as

Formation of a specific layer on the surface of a metallic target interacting with a shaped-charge jet of boron-containing liners

  • S. A. Kinelovskii
  • A. V. Alekseev
  • S. A. Gromilov
  • I. B. Kireenko
Article
  • 32 Downloads

Abstract

Coatings on titanium targets are obtained under conditions of a shaped-charge explosion; the maximum microhardness of the coatings at certain segments of the target can reach 4000 kg/mm2. A conical liner with a cone angle of 20° prepared from a mixture of fine powders of amorphous boron and ammonium nitrate is used in the experiments. A comparative quantitative X-ray powder diffraction analysis of various segments of the coating is performed. The values of the unit cell parameters indicate the formation of complex phases. The dynamics of the results of the X-ray study with the cone angle of the liner decreasing from 45 to 20° is demonstrated.

Key words

shaped-charge explosion coating titanium boron X-ray powder diffraction analysis (XDA) microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Gromilov, A. V. Alekseev, S. A. Kinelovskii, and I. B. Kireenko, “Phase composition of coatings applied to titanium targets by means of shaped-charge jets,” Combust., Expl., Shock Waves, 40, No. 3, 363–369 (2004).CrossRefGoogle Scholar
  2. 2.
    S. A. Gromilov, A. V. Alekseev, S. A. Kinelovskii, and I. B. Kireenko, “Layers produced by entrapment of a shaped-charge jet in a titanium target,” Combust., Expl., Shock Waves, 39, No. 6, 727–734 (2003).CrossRefGoogle Scholar
  3. 3.
    S. A. Gromilov, S. A. Kinelovskii, and I. B. Kireenko, “Surface of a titanium target after interaction with shaped-charge jet particles,” Combust., Expl., Shock Waves, 39, No. 5, 601–605 (2003).CrossRefGoogle Scholar
  4. 4.
    S. A. Gromilov, S. A. Kinelovskii, Yu. N. Popov, and Yu. A. Trishin, “Method of applying coatings of refractory metals and their compounds with light nonmetals,” Patent of the Russian Federation No. 2144574C1, Otkr. Izobr., No. 2 (2000).Google Scholar
  5. 5.
    G. V. Samsonov, “Investigation of the physicochemical nature of metal-like and nonmetal refractory compounds using the microhardness method,” in: Methods of Microhardness Testing. Instruments [in Russian], Nauka, Moscow (1965), pp. 59–71.Google Scholar
  6. 6.
    W. Kraus and G. Nolze, “POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns,” J. Appl. Cryst., 29, 301 (1996).CrossRefGoogle Scholar
  7. 7.
    “Metals and alloys. Method of measuring the Vickers hardness,” USSR State Standard No. 299-75, Adopted 07.01.76.Google Scholar
  8. 8.
    “Microhardness measurements by means of diamond indentation,” USSR State Standard No. 9450-76, Adopted 01.01.77.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. A. Kinelovskii
    • 1
  • A. V. Alekseev
    • 2
  • S. A. Gromilov
    • 2
  • I. B. Kireenko
    • 2
  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirsk
  2. 2.Nikolaev Institute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations