Skip to main content
Log in

Thermal Decomposition and Combustion of Ammonium Dinitramide (Review)

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A comprehensive review of thermal decomposition and combustion of ammonium dinitramide (ADN) has been conducted. The basic thermal properties, chemical pathways, and reaction products in both the condensed and gas phases are analyzed over a broad range of ambient conditions. Detailed combustion-wave structures and burning-rate characteristics are discussed. Prominent features of ADN combustion are identified and compared with other types of energetic materials. In particular, the influence of various condensed- and gas-phase processes in dictating the pressure and temperature sensitivities of the burning rate is examined. In the condensed phase, decomposition proceeds through the mechanisms ADN → NH4NO3 + N2O and ADN → NH3 + HNO3 + N2O, the former mechanism being the basic one. In the gas phase, the mechanisms ADN → NH3 + HDN and ADN → NH3 + HNO3 + N2O are prevalent. The gas-phase combustion-wave structure in the range of 5–20 atm consists of a near-surface primary flame followed by a dark-zone temperature plateau at 600–1000°C and a secondary flame followed by another dark-zone temperature plateau at 1000–1400°C. At higher pressures (60 atm and above), a final flame is observed at about 1800°C without the existence of any dark-zone temperature plateau. ADN combustion is stable in the range of 5–20 atm and the pressure sensitivity of the burning rate has the form r b = 20.72p 0.604 [mm/sec] (p = 0.5–2.0 MPa). The burning characteristics are controlled by exothermic decomposition in the condensed phase. Above 100 atm, the burning rate is well correlated with pressure as r b = 8.50p 0.608 [mm/sec] (p = 10–36 MPa). Combustion is stable, and intensive heat feedback from the gas phase dictates the burning rate. The pressure dependence of the burning rate, however, becomes irregular in the range of 20–100 atm. This phenomenon may be attributed to the competing influence of the condensed-phase and gas-phase exothermic reactions in determining the propellant surface conditions and the associated burning rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Bormann, “Advanced energetic materials emerge for military and space applications,” Chem. Eng. News, Jan. 17, 18–22 (1994).

  2. J. C. Bottaro, P. E. Penwell, and R. J. Schmitt, “1,1,3,3-Tetraoxo-1,2,3-Triazapropene anion, a new oxy anion of nitrogen: The dinitramide anion and its salts,” J. Amer. Chem. Soc., 119, 9405–9410 (1997).

    Article  Google Scholar 

  3. S. Venkatachalam, G. Santhosh, and K. N. Ninan, “An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts,” Propel., Expl., Pyrotech., 29, 178–187 (2004).

    Google Scholar 

  4. O. A. Lukyanov, O. V. Anikin, V. P. Gorelik, and V. A. Tartakovsky, “Dinitramide and its salts. 3. Metallic salts of dinitramide,” Russ. Chem. Bull., 43, 1457–1461 (1994).

    Google Scholar 

  5. O. A. Lukyanov, A. R. Agevnin, A. A. Leichenko, et al., “Dinitramide and its salts. 6. Dinitramide salts derived from ammonium bases,” Russ. Chem. Bull., 44, 108–112 (1995).

    Google Scholar 

  6. R. D. Gilardi, J. Flippen-Anderson, C. George, and R. J. Buther, “A new class of flexible energetic salts: the crystal structures of the ammonium, lithium, potassium, and cesium salts of dinitramide,” J. Amer. Chem. Soc., 119, 9411–9416 (1997).

    Article  Google Scholar 

  7. R. D. Gilardi and R. J. Butcher, “A new class of flexible energetic salts. Part 4: The crystal structures of hexaaquomagnesium (II), hexaaquomanganese (II), and hexaaquozinc (II) dihydrate salts of dinitramide,” J. Chem. Crystallogr., 28, 105–110 (1998).

    Google Scholar 

  8. R. J. Butcher and R. D. Gilardi, “A new class of flexible energetic salts. Part 2: The crystal structures of the cubane-1,4-diammonium dinitramide and cubane-1,2,4,7-tetraammonium dinitramide salts,” ibid., pp. 95–104.

  9. R. D. Gilardi and R. J. Butcher, “A new class of flexible energetic salts. Part 3: The crystal structures of the 3,3-dinitroazetidinium dinitramide and 1-i-propyl-3,3-dinitroazetidinium dinitramide salts,” ibid., pp. 163–169.

  10. V. P. Sinditskii, A. E. Fogelzang, A. I. Levshenkov, et al., “Combustion behavior of dinitramide salts,” AIAA Paper No. 98-0808 (1998).

  11. Z. Pak, “Some ways to higher environmental safety of solid rocket propellant application,” AIAA Paper No. 93-1755 (1993).

  12. A. A. Zenin, V. M. Puchkov, and S. V. Finjakov, “Physics of ADN combustion,” AIAA Paper No. 99-0595 (1999).

  13. R. J. Schmitt, J. C. Bottaro, and P. E. Penwell, “Synthesis of cubane based energetic molecules,” AD-A 263271 (1993).

  14. T. P. Russell, G. J. Piermari, S. Block, and P. J. Miller, “Pressure, temperature reaction phase diagram for ammonium dinitramide,” J. Phys. Chem., 100, 3248–3251 (1996).

    Article  Google Scholar 

  15. T. P. Russell, A. G. Stern, W. M. Koppes, and C. D. Bedford, “Thermal decomposition and stabilization of ammonium dinitramide,” in: Proc. 29th JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 593, Vol. II (1992), pp. 339–345.

    Google Scholar 

  16. M. D. Pace, “Spin trapping of nitrogen dioxide from photolysis of sodium nitrite, ammonium nitrate, ammonium dinitramide, and cyclic nitramines,” J. Phys. Chem., 98, 6251–6257 (1994).

    Article  Google Scholar 

  17. V. A. Shlyapochnikov, G. I. Oleneva, N. O. Cherskaya, et al., “Molecular absorption spectra of dinitramide and its salts,” J. Mol. Struct., 348, 103–106 (1995).

    Article  ADS  Google Scholar 

  18. V. A. Shlyapochnikov, N. O. Cherskaya, O. A. Luk'yanov, et al., “Dinitramide and its salts. 4. Molecular structure of dinitramide,” Russ. Chem. Bull., 43, 1522–1525 (1994).

    Article  Google Scholar 

  19. V. A. Shlyapochnikov, G. I. Oleneva, N. O. Cherskaya, et al., “Dinitramide and its salts,” Russ. Chem. Bull., 44, 1449–1453 (1995).

    Google Scholar 

  20. K. O. Christe, W. W. Wilson, M. A. Petrie, et al., “The dinitramide anion, N(NO2)2,” Inorg. Chem., 35, 5068–5071 (1996).

    Article  Google Scholar 

  21. T. B. Brill, P. J. Brush, and D. G. Patil, “Thermal decomposition of energetic materials 58. Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature,” Combust. Flame, 92, 178–186 (1993).

    Article  Google Scholar 

  22. P. Politzer, J. M. Seminario, and M. C. Concha, “Energetics of ammonium dinitramide decomposition steps,” J. Mol. Struct. (Theochem.), 427, 123–129 (1998).

    Article  Google Scholar 

  23. A. M. Mebel, M. C. Lin, K. Morokuma, et al., “Theoretical study of the gas-phase structure, thermochemistry, and decomposition mechanisms of NH4NO2 and NH4N(NO2),” J. Phys. Chem., 99, 6842–6848 (1995).

    Google Scholar 

  24. B. L. Fetherolf and T. A. Litzinger, “CO2 laser-induced combustion of ammonium dinitramide (ADN),” Combust. Flame, 114, 515–530 (1998).

    Article  Google Scholar 

  25. M. J. Rossi, J. C. Bottaro, and D. F. McMillen, “The thermal decomposition of the new energetic material ammonium dinitramide (NH4N(NO2)2) in relation to nitramide (NH2NO2) and NH4NO3,” Int. J. Chem. Kinet., 25, 549–570 (1993).

    Article  Google Scholar 

  26. S. Lobbecke, H. H. Krause, and A. Pfeil, “Thermal analysis of ammonium dinitramide decomposition,” Propel., Expl., Pyrotech., 22, 184–188 (1997).

    Google Scholar 

  27. A. I. Kazakov, Y. I. Rubtsov, and G. B. Manelis, “Kinetics and mechanism of thermal decomposition of dinitramide,” Propel., Expl., Pyrotech., 24, 37–42 (1999).

    Google Scholar 

  28. A. S. Tompa, “Thermal analysis of ammonium dinitramide (ADN),” Thermochim. Acta, 357-358, 177–193 (1999).

    Google Scholar 

  29. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, et al., “Development and application of molecular beam mass-spectrometry to the study of ADN combustion chemistry,” AIAA Paper No. 98-0445 (1998).

  30. E. W. Price, S. R. Chakravarthy, J. M. Freeman, et al., “Combustion of propellants with ADN,” AIAA Paper No. 98-3387 (1998).

  31. A. E. Fogelzang, V. P. Stinditskii, V. Y. Egroshev, et al., “Combustion behavior and flame structure of ammonium dinitramide,” in: Proc. 28th Int. Ann. Conf. ICT, Karlsruhe, FRG, June 24–27 (1997), pp. 1–14.

  32. Y. C. Liau, V. Yang, M. C. Lin, and J. Park, “Analysis of ADN combustion with detailed chemistry,” in: Proc. 35th JANNAF Combustion Subcommittee Meeting, CPIA Publ. (1998).

  33. M. C. Lin and J. Park, “Thermal decomposition of gaseous ammonium dinitramide at low pressure: Kinetic modeling of product formation with ab initio MO/VRRKM calculations,” in: Proc. 27th Symp. (Int.) on the Combustion, Vol. 2, The Combustion Inst., Pittsburgh (1998), pp. 2351–2357.

    Google Scholar 

  34. A. I. Atwood, T. L. Boggs, P. O. Curran, et al., “Burn rate of solid propellant ingredients. Part 1: Pressure and initial temperature effects,” J. Propuls. Power, 15, 740–752 (1999).

    Google Scholar 

  35. J. C. Oxley, J. L. Smith, W. Zhang, et al., “Thermal decomposition studies on ammonium dinitramide (ADN) and 15N and 2H isotopomers,” J. Phys. Chem., 101, 5646–5652 (1997).

    Google Scholar 

  36. S. Vyazovkin and C. Wight, “Ammonium dinitramide: Kinetics and mechanism of thermal decomposition,” ibid., pp. 5653–5658.

  37. S. Vyazovkin and C. Wight, “Thermal decomposition of ammonium dinitramide at moderate and high temperatures,” ibid., pp. 7217–7221.

  38. S. Vyazovkin and C. Wight, “Isothermal and non-isothermal reaction kinetics in solids: In search of ways toward consensus,” ibid., pp. 8279–8284.

  39. A. S. Tompa, R. F. Boswell, P. Skahan, et al., “Low/high temperature relationships in dinitramide salts by DEA/DSC and study of oxidation of aluminum powders by DSC/TG,” J. Therm. Anal., 49, 1161–1170 (1997).

    Google Scholar 

  40. H. H. Michels and J. A. Montgomery, Jr., “On the structure and thermochemistry of hydrogen dinitramide,” J. Phys. Chem., 97, 6602–6606 (1993).

    Article  Google Scholar 

  41. A. N. Pavlov and G. M. Nazin, “Decomposition mechanisms of dinitramide onium salts,” Russ. Chem. Bull., 46, 1848–1850 (1997).

    Google Scholar 

  42. A. Langlet, N. Wingborg, and H. Ostmart, “ADN: A new and promising oxidizer for composite rocket propellants,” in: K. K. Kuo (ed.), Challenges in Propellants and Combustion: 100 Years after Nobel, Begell House, New York (1997), pp. 616–626.

    Google Scholar 

  43. S. B. Babkin, A. N. Pavlov, and G. M. Nazin, “Anomalous decomposition of dinitramide metal salts in the solid phase,” Russ. Chem. Bull., 46, 1844–1847 (1997).

    Google Scholar 

  44. F. I. Dubovitskii, G. A. Volkov, V. N. Grebennikov, et al., “Thermal decomposition of potassium dinitramide in the liquid state,” Dokl. Chem., 347, 106–108 (1996).

    Google Scholar 

  45. M. L. Chan, A. Turner, L. Merwin, et al., “ADN propellant technology,” in: K. K. Kuo (ed.), Challenges in Propellants and Combustion: 100 Years after Nobel, Begell House, New York (1997), pp. 627–635.

    Google Scholar 

  46. G. B. Manelis, “Thermal decomposition of dinitramide ammonium salt,” in: Proc. 26th Int. Ann. Conf. ICT, Karlsruhe, FRG, July 4–7 (1995), pp. 15.1–15.17.

  47. A. I. Kazakov, Yu. I. Rubtsov, L. P. Andrienko, and G. B. Manelis, “Kinetics of the thermal decomposition of dinitramide. 3. Kinetics of the heat release at ADN thermolysis in the liquid phase,” Russ. Chem. Bull., 47, 379–385 (1998).

    Google Scholar 

  48. J. P. Agrawal, S. M. Walley, and J. E. Field, “High-speed photographic study of the impact response of ammonium dinitramide and glycidyl azide polymer,” J. Propuls. Power, 13, 463–470 (1997).

    Article  Google Scholar 

  49. H. Hatano, T. Onda, K. Shiino, et al., “New scientific methods and properties of ammonium dinitramide,” Kayaku Gakkaishi, 57, 160–165 (1996).

    Google Scholar 

  50. K. J. Krautle and A. J. Atwood, “The reaction of ammonium dinitramide under thermal load,” in: Proc. 29th JANNAF Combust. Subcommittee Meeting, CPIA Publ. No. 593, Vol. IV (1992), p. 157.

    Google Scholar 

  51. L. Lobbecke, S. Krause, and A. Pfeil, “Thermal decomposition and stabilization of ammonium dinitramide (ADN),” in: Proc. 28th Int. Ann. Conf. ICT, Karlsruhe, FRG, June 24–27 (1997), pp. 112.1–112.8.

  52. W. A. Rosser, S. H. Inami, and H. Wise, “The kinetics of decomposition of liquid ammonium nitrate,” J. Phys. Chem., 67, 1753–1757 (1963).

    Google Scholar 

  53. G. Santhosh, S. Venkatachalam, A. U. Francis, et al., “Thermal decomposition kinetic studies on ammonium dinitramide (ADN)-glycidyl azide polymer (GAP) system,” in: Proc. 33rd Int. Ann. Conf. ICT, Karlsruhe, FRG, July (2002), pp. 64.1–64.14.

  54. J. Hommel and J.-F. Trubert, “Study of the condensed phase degradation and combustion of two new energetic charges for low polluting and smokeless propellants: HNIW and ADN,” ibid., pp. 10.1–17.8.

  55. P. Politzer and J. M. Seminario, “Computational study of the structure of dinitraminic acid, HN(NO2)2, and the energetics of some possible decomposition steps,” Chem. Phys. Lett., 216, 348–352 (1993).

    Article  ADS  Google Scholar 

  56. A. I. Kazakov, Yu. I. Rubtsov, G. B. Manelis, and L. P. Andrienko, “Kinetics of the thermal decomposition of dinitramide. 1. The decomposition of different forms of dinitramide,” Russ. Chem. Bull., 46, 2015–2020 (1997).

    Google Scholar 

  57. A. I. Kazakov, Yu. I. Rubtsov, G. B. Manelis, and L. P. Andrienko, “Kinetics of the thermal decomposition of dinitramide. 2. Kinetics of the interaction of dinitramide with the decomposition products and other components of a solution,” Russ. Chem. Bull., 47, 39–44 (1998).

    Google Scholar 

  58. R. J. Schmitt, M. Krempp, and V. M. Bierbaum, “Gas phase chemistry of dinitramide and nitroacetylide ions,” Int. J. Mass Spectrom. Ion Proces., 117, 621–632 (1992).

    Google Scholar 

  59. P. Politzer, J. M. Serminario, M. C. Concha, and P. C. Redfern, “Density functional study of the structure and some decomposition reactions of the dinitramide anion N(NO2)2J. Mol. Struct. (Theochem.), 287, 235–240 (1993).

    Article  Google Scholar 

  60. R. J. Doyle, Jr., “Sputtered ammonium dinitramide: tandem mass spectrometry of a new ionic nitramine,” Org. Mass Spectrom., 28, 83–91 (1993).

    Article  Google Scholar 

  61. G. Ferick, “The dissociation pressure and free energy of formation of ammonium nitrate,” J. Amer. Chem. Soc., 76, 5858–5860 (1954).

    Google Scholar 

  62. G. Ferick and R. M. Hainer, “On the thermal decomposition of ammonium nitrate. Steady-state reaction temperatures and reaction rate,” J. Amer. Chem. Soc., 76, 5860–5863 (1954).

    Google Scholar 

  63. S. Alavi and D. L. Thompson, “Proton transfer in gas-phase ammonium dinitramide clusters,” J. Chem. Phys., 118, 2599–2605 (2003).

    Article  ADS  Google Scholar 

  64. M. D. Cliff, M. W. Smith, and D. P. Edwards, “Evidence of nitrate formation from the thermal decay of alkali metal dinitramides,” Propel., Expl., Pyrotech., 24, 43–45 (1999).

    Google Scholar 

  65. M. W. Beckstead, “Overview of combustion mechanisms and flame structures for advanced,” in: V. Yang, T. B. Brill, and W.-Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellants in Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics (2000), pp. 267–285.

  66. V. Weiser, N. Eisenrich, A. Baier, and W. Eckl, “Burning behavior of ADN formulations,” Propel., Expl., Pyrotech., 24, 163–167 (1999).

    Google Scholar 

  67. O. P. Korobeinichev and A. A. Paletsky, “Flame structure of ADN/HTPB composite propellants,” Combust. Flame, 127, 2059–2065 (2001).

    Article  Google Scholar 

  68. O. P. Korobeinichev, T. A. Bolshova, and A. A. Paletsky, “Modeling the chemical reactions of ammonium dinitramide (ADN) in a flame,” Combust. Flame, 126, 1516–1523 (2001).

    Article  Google Scholar 

  69. L. V. Kuibida, O. P. Korobeinichev, A. G. Shmakov, et al., “Mass spectrometric study of combustion of GAP-and ADN-based propellants,” ibid., pp. 1655–1661.

  70. O. P. Korobeinichev, A. A. Paletsky, A. G. Tereschenko, and E. N. Volkov, “Study of combustion characteristics of ammonium dinitramide/polycaprolactone propellants,” J. Propuls. Power, 19, 203–212 (2003).

    Google Scholar 

  71. T. Parr and D. Hanson-Parr, “ADN Propellant Diffusion Flame Structure,” in: Proc. 29th JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 593, Vol. II (1992), pp. 313–327.

    Google Scholar 

  72. T. Parr and D. Hanson-Parr, “ADN diffusion flame structure at elevated pressure,” in: Proc. 30th JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 606, Vol. II (1993), pp. 1–13.

    Google Scholar 

  73. T. P. Parr and D. M. Hanson-Parr, “Solid propellant diffusion flame structure,” in: Proc. 26th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 1981–1987.

    Google Scholar 

  74. D. Yang, H. Song, F. Zhao, et al., “Theoretical calculation of burning rate characteristics of ADN and its mixtures,” J. Propuls. Technol. (in Chinese), 19, 87–91 (1998).

    Google Scholar 

  75. D. Yang, H. Song, F. Zhao, and S. Li, “Burning-rate prediction of double-base plateau propellants,” in: V. Yang, T. B. Brill, and W.-Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, (2000), pp. 533–548.

  76. N. Kubota, “Survey of rocket propellants and their combustion characteristics,” in: K. K. Kuo and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 90: Fundamentals of Solid-Propellant Combustion (1984), pp. 1–52.

  77. A. Bizot and M. W. Beckstead, “A model for double base propellant combustion,” in: 22nd Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1988), pp. 1827–1834.

    Google Scholar 

  78. D. Hanson-Parr and T. Parr, “RDX laser assisted flame structure,” in: Proc. 31st JANNAF Combustion Subcommittee Meeting, CPIA Publ. No. 620, Vol. II (1994), pp. 407–423.

    Google Scholar 

  79. Y.-C. Liau and V. Yang, “On the existence of the dark-zone temperature plateau in RDX monopropellant combustion,” AIAA Paper No. 97-0589 (1997).

  80. W. A. Rosser (Jr.) and H. Wise, “Gas-phase oxidation of ammonia by nitrogen dioxide,” J. Chem. Phys., 25, 1078–1079 (1956).

    Article  ADS  Google Scholar 

  81. F. Falk and R. N. Pease, “An initial report on the stoichiometry and kinetics of the gas phase reaction of nitrogen dioxide and ammonia,” J. Amer. Chem. Soc., 76, 4746–4747 (1954).

    Article  Google Scholar 

  82. G. Bedford and J. H. Thomas, “Reaction between ammonia and nitrogen dioxide,” JCS Faraday Trans. I, 68, 2163–2170 (1972).

    Google Scholar 

  83. A. G. Thaxton, C.-C. Hsu, and M. C. Lin, “Rate constant for the NH3 + NO2 → NH2 + HONO reaction: Comparison of kinetically modeled and predicted results,” Int. J. Chem. Kinet., 29, 245–251 (1997).

    Article  Google Scholar 

  84. J. Park and M. C. Lin, “Mass-spectrometric determination of product branching probabilities for the NH2 + NO2 reaction at temperatures between 300 and 990 K,” Int. J. Chem. Kinet., 28, 879–883 (1996).

    Article  Google Scholar 

  85. J. Park and M. C. Lin, “Laser-initiated NO reduction by NH3: Total rate constant and product branching ratio measurements for the NH2 + NO reaction,” J. Phys. Chem. A, 101, 5–13 (1997).

    Google Scholar 

  86. J. Park and M. C. Lin, “A mass spectrometric study of the NH2 + NO2 reaction,” J. Phys. Chem. A, 101, 2643–2647 (1997).

    Google Scholar 

  87. J. Park and M. C. Lin, “Direct determination of product branching for the NH2 + NO reaction at temperatures between 302 and 1060 K,” J. Phys. Chem., 100, 3317–3319 (1996).

    Google Scholar 

  88. A. M. Mebel and M. C. Lin, “Reactions of NO with nitrogen hydrides,” Int. Rev. Phys. Chem., 16, 249–266 (1997).

    Google Scholar 

  89. P. Glarborg, Dam-Johansen, J. A. Miller, et al., “Modeling the thermal DENOx process in flow reactors. Surface effects and nitrous oxide formation,” Int. J. Chem. Kinet., 26, 421–436 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 6, pp. 54–79, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Thakre, P. & Yang, V. Thermal Decomposition and Combustion of Ammonium Dinitramide (Review). Combust Explos Shock Waves 41, 657–679 (2005). https://doi.org/10.1007/s10573-005-0079-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0079-y

Key words

Navigation