Combustion, Explosion and Shock Waves

, Volume 41, Issue 5, pp 599–609 | Cite as

Electrical Conductivity of Metal Powders under Shock Compression

  • S. D. Gilev


The electrical conductivity of a series of metal powders under shock compression is measured by an electrocontact technique. Initially, the metal particles are covered by an oxide film, and the powder is non-conducting. Under shock compression, the powder acquires macroscopic conductivity. The electrical conductivity of the shock-compressed powder depends substantially on the metal, porosity, particle size, and shock-wave pressure. The macroscopic electrical conductivity behind the shock-wave front is uniform within the experimental error. The dependences for fine and coarse aluminum powders on the shock-wave pressure are found. It is demonstrated that these dependences are nonmonotonic. For high shock-wave pressures, the electrical conductivity of the substance decreases. This behavior is assumed to be related to strong temperature heating of the substance under shock compression. Estimates of temperature show that shock compression can induce melting and partial vaporization of the metal. The same is evidenced by the behavior of electrical conductivity whose value for fine particles is close to the electrical conductivity of the melt. The electrical conductivity of the coarse powder is heterogeneous because of the strong thermal nonequilibrium of the particle during shock compression. An analysis of results for different metals shows that the basic parameter responsible for electrical conductivity of the shock-compressed powder is the dimensionless density.

Key words

shock compression metal powder electrical conductivity thermal nonequilibrium melting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Prummer, Explosivverdichtung Pulvriger Substanzen, Springer-Verlag, BRD (1987).Google Scholar
  2. 2.
    S. S. Batsanov, Effects of Explosions on Materials: Modification and Synthesis under High-Pressure Shock Compression, Springer Verlag, New York-Berlin-Heidelberg (1994).Google Scholar
  3. 3.
    A. N. Dremin, P. F. Pokhil, and M. I. Arifov, “Effect of aluminum of TNT detonation parameters,” Dokl. Akad. Nauk SSSR, 131, No.5, 1140–1142 (1960).Google Scholar
  4. 4.
    A. I. Aniskin, “Detonation of aluminum-containing explosives,” in: Detonation and Shock Waves [in Russian], Chernogolovka (1986), pp. 26–32.Google Scholar
  5. 5.
    A. M. Grishkin, L. V. Dubnov, V. Yu. Davydov, et al., “Effect of powdered aluminum additives on the detonation parameters of high explosives,” Combust., Expl., Shock Waves, 29, No.2, 239–241 (1993).Google Scholar
  6. 6.
    N. A. Imkhovik and V. S. Solov'ev, “Oxidation of disperse aluminum in detonation products of condensed HEs,” in: Proc. of the 21th Int. Pyrotechnics Seminar, IChP RAS, Moscow (1995), pp. 316–331.Google Scholar
  7. 7.
    B. S. Ermolaev, B. A. Khasainov, G. Baudin, and A.-N. Presles, “Behavior of aluminum in detonation of high explosives. Surprises and interpretations,” Chem. Phys. Reports, 18, No.6, 1121–1140 (2000).Google Scholar
  8. 8.
    V. I. Arkhipov, M. N. Makhov, V. I. Pepekin, and V. G. Shchetinin, “Detonation of aluminized HEs,” Khim. Fiz., 18, No.12, 53–57 (1999).Google Scholar
  9. 9.
    S. D. Gilev and A. M. Trubachev, “Obtaining strong magnetic fields by shock waves in substances,” Pis'ma Zh. Tekh. Fiz., 8, No.15, 914–917 (1982).Google Scholar
  10. 10.
    E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “Shock-wave MC generators,” in: V. M. Titov and G. A. Shvetsov (eds.), Ultrahigh Magnetic Fields. Physics. Techniques. Applications, Proc. 3rd Int. Conf. on Generation of Megagauss Magnetic Fields and Related Experiments (Novosibirsk, 1983), Nauka, Moscow (1984), pp. 88–93.Google Scholar
  11. 11.
    K. Nagayama, T. Oka, and T. Mashimo, “Experimental study of a new mechanism of magnetic flux cumulation by the propagation of shock-compressed conductive region in silicon,” J. Appl. Phys., 53, No.4, 3029 (1982).CrossRefGoogle Scholar
  12. 12.
    K. Nagayama and T. Mashimo, “Explosive-driven magnetic flux cumulation by the propagation of shock-compressed conductive region in highly porous metal powders,” J. Appl. Phys., 61, No.10, 4730–4735 (1987).CrossRefGoogle Scholar
  13. 13.
    S. D. Gilev and A. M. Trubachev, “Generation of a magnetic field by a detonation wave,” Zh. Tekh. Fiz., 72, No.4, 103–106 (2002).Google Scholar
  14. 14.
    S. D. Gilev, “Current commutation by a detonation wave in a metallic sponge,” Zh. Tekh. Fiz., 67, No.1, 122–124 (1997).Google Scholar
  15. 15.
    G. I. Kuz'min, V. V. Pai, and I. V. Yakovlev, Experimental and Analytical Methods in Problems of Dynamic Loading of Materials [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2002).Google Scholar
  16. 16.
    S. D. Gilev, “Electrical conductivity of high-porosity aluminum under conditions of shock-wave loading,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 99, Inst. Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1990), pp. 105–109.Google Scholar
  17. 17.
    R. Killer, “Electric conductivity of condensed media at high pressures,” in: P. Caldirola and H. Knoepfel (eds.), Physics of High Energy Density, Academic Press, New York (1971).Google Scholar
  18. 18.
    S. S. Nabatov, A. N. Dremin, V. I. Postnov, and V. V. Yakushev, “Measurement of electrical conductivity of sulfur under dynamic compression to 400 kbar,” Pis'ma Zh. Tekh. Fiz., 5 No.3, 143–145 (1979).Google Scholar
  19. 19.
    L. A. Gatilov and L. V. Kuleshova, “Measurement of high electrical conductivity in shock-compressed dielectrics,” J. Appl. Mech. Tech. Phys., 22, No.1, 114–117 (1981).CrossRefGoogle Scholar
  20. 20.
    V. I. Postnov, L. A. Anan'eva, A. N. Dremin, et al., “Electrical conductivity and compressibility of sulfur under shock loading,” Combust., Expl., Shock Waves, 22, No.4, 486–488 (1986).Google Scholar
  21. 21.
    W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 Gpa (1.4 Mbar),” Phys. Rev. B, 59, No.5, 3434–3449 (1999).CrossRefGoogle Scholar
  22. 22.
    S. D. Gilev and A. M. Trubachev, “Method of measurement of electrical conductivity of substances in shock waves,” in: Proc. 4th All-Union Workshop on Detonation (Telavi, 1988), Vol. 2, Chernogolovka (1988), pp.8–12.Google Scholar
  23. 23.
    S. D. Gilev and T. Yu. Mihailova, “The development of a method of measuring a condensed matter electroconductivity for investigation of dielectric-metal transitions in a shock wave,” J. Phys. IV, 5 (1997); in: Colloque C3 Suppl. J. Phys. III, N7; 5th Int. Conf. on Mechanical and Physical Behaviour of Materials under Dynamic Loading (EURODYMAT 97), Toledo, Spain, September 22–26 (1997), pp. C3-211–216.Google Scholar
  24. 24.
    S. D. Gilev and T. Yu. Mikhailova, “Current wave in shock compression of a substance in a magnetic field,” Zh. Tekh. Fiz., 66, No.5, 1–9 (1996).Google Scholar
  25. 25.
    S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic processes in a system of conductors formed by a shock wave,” Zh. Tekh. Fiz., 66, No.10, 109–117 (1996).Google Scholar
  26. 26.
    L. P. Orlenko (ed.), Physics of Explosion [in Russian], Fizmatlit, Moscow (2002).Google Scholar
  27. 27.
    L. V. Al'tshuler, A. A. Bakanova, I. P. Dudoladov, et al., “Shock adiabatic curves of metals. New data, statistical analysis, and general laws,” J. Appl. Mech. Tech. Phys., 22, No.2, 145–169 (1981).CrossRefGoogle Scholar
  28. 28.
    R. G. McQeen, S. P. Marsh, J. W. Taylor, et al., “Equation of state of solids from shock wave measurements,” in: R. Kinslow (ed.), High-Velocity Impact Phenomena, Academic Press, New York-London (1970).Google Scholar
  29. 29.
    B. I. Shekhter and L. A. Shushko, “Shock adiabats of some laminar plastics,” Combust., Expl., Shock Waves, 9, No.4, 519–520 (1973).Google Scholar
  30. 30.
    A. G. Beloshapko and A. A. Bukaemskii, “Shock adiabat of high-porosity aluminum,” in: A. M. Staver (ed.), Ultradisperse Materials. Obtaining and Properties (collected scientific papers) [in Russian], Krasnoyarsk Polytech. Inst., Krasnoyarsk (1990), pp. 28–32.Google Scholar
  31. 31.
    Yu. B. Khvostov, “Physics of shock waves in porous materials,” Report, Schmidt Institute of the Earth's Physics, Moscow (1984).Google Scholar
  32. 32.
    R. F. Trunin, G. V. Simakov, Yu. I. Sutulov, et al., “Compressibility of porous metals in shock waves,” Zh. Eksp. Tekh. Fiz., 96, No.3(9), 1024–1038 (1989).Google Scholar
  33. 33.
    Yu. B. Khvostov, “Obtaining of nonideal plasma in shock compression of high-porosity metals,” Dokl. Akad. Nauk SSSR, 294, No.2, 302–306 (1987).Google Scholar
  34. 34.
    K.-H. Oh and P.-A. Persson, “Equation of state for extrapolation of high-pressure shock Hugoniot data,” J. Appl. Phys., 65, No.10, 3852–3856 (1989).CrossRefGoogle Scholar
  35. 35.
    S. D. Gilev and A. M. Trubachev, “Measurement of high electrical conductivity in silicon in shock waves,” J. Appl. Mech. Tech. Phys., 29, No.6, 818–823 (1988).CrossRefGoogle Scholar
  36. 36.
    P. V. Bridgman, Novel Activities in the Field of High Pressures [in Russian], Moscow (1948).Google Scholar
  37. 37.
    D. L. Styris and G. E. Duvall, “Electrical conductivity of materials under shock compression,” High Temp.-High Pressures, 2, No.5, 477–499 (1970).Google Scholar
  38. 38.
    J. J. Dick and D. L. Styris, “Electrical resistivity of silver foils under uniaxial shock-wave compression,” J. Appl. Phys., 46, No.4, 1602–1617 (1975).CrossRefGoogle Scholar
  39. 39.
    L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances: Hand-book [in Russian], Nauka, Moscow (1978).Google Scholar
  40. 40.
    E. Yu. Tonkov, Phase Diagrams of Elements at High Pressures [in Russian], Nauka, Moscow (1979).Google Scholar
  41. 41.
    O. A. Shmatko and Yu. V. Usov, Electric and Magnetic Properties of Metals and Alloys: Handbook [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  42. 42.
    A. R. Regel and V. M. Glazov, Physical Properties of Electron Melts [in Russian], Nauka, Moscow (1980).Google Scholar
  43. 43.
    V. I. Odelevskii, “Calculation of generalized conductivity of heterogeneous systems. I. Matrix two-phase systems with non-extended inclusions,” Zh. Tekh. Fiz., 21, No.6, 667–677 (1951).Google Scholar
  44. 44.
    F. P. Bundy and J. S. Kasper, “Electrical behaviour of sodium-silicon clathrates at very high pressures,” High Temp.-High Pressures, 2, 429–436 (1970).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. D. Gilev
    • 1
  1. 1.Lavrent'ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations