Combustion, Explosion and Shock Waves

, Volume 41, Issue 5, pp 521–527 | Cite as

Hot-Spot Ignition of a Reactive Gas in an Inert Porous Medium

  • R. S. Burkina


The main stages of development of hot-spot ignition of a reactive gas in a high-porous medium with high values of the Peclet number under conditions of natural gas filtration and limited internal heat transfer between the phases are determined. Gas ignition in a U-shaped hot spot is considered within the framework of an asymptotic analysis with high values of the temperature difference and Frank-Kamenetskii parameter. The critical relation of parameters separating the regimes of gas ignition and gradual cooling of the hot spot is determined. The dependence of the ignition time on parameters of the process is found and analyzed. A strong effect of interphase heat transfer on the ignition limit and time is demonstrated. An example of calculating the critical parameters of hot-spot ignition of methane in processed rocks is given.

Key words

hot-spot ignition porous medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Aldyshin and A. G. Merzhanov, “Theory of filtrational combustion: General notions and state of research,” in: Yu. Sh. Matros (ed.), Propagation of Heat Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988), pp. 9–52.Google Scholar
  2. 2.
    V. S. Babkin and Yu. M. Laevskii, “Seepage gas combustion,” Combust., Expl., Shock Waves, 23, No.5, 531–547 (1987).Google Scholar
  3. 3.
    A. G. Merzhanov, V. V. Barzykin, and V. T. Gontkovskaya, “Problem of a hot-spot thermal explosion,” Dokl. Akad. Nauk SSSR, 148, No.2, 380–383 (1963).Google Scholar
  4. 4.
    P. H. Thomas, “An approximate theory of ‘hot spot’ criticality,” Combust. Flame, 21, No.1, 99–109 (1973).CrossRefGoogle Scholar
  5. 5.
    M. B. Zaturska, “Thermal explosion of interacting hot spots,” Combust. Flame, 25, No.1, 25–30 (1975).CrossRefGoogle Scholar
  6. 6.
    R. S. Burkina and V. N. Vilyunov, “Initiation of chemical reaction at a ‘hot spot’,” Combust., Expl., Shock Waves, 16, No.4, 423–426 (1980).Google Scholar
  7. 7.
    R. S. Burkina and V. N. Vilyunov, “Hot-spot ignition with an arbitrary initial temperature distribution,” Khim. Fiz., No. 3, 419–422 (1982).Google Scholar
  8. 8.
    B. S. Seplyarskii, “Ignition of condensed systems with gas filtration,” Fiz. Goreniya Vzryva, 27, No.1, 3–12 (1991).Google Scholar
  9. 9.
    I. G. Dik and A. V. Tolstykh, “Two-temperature model for the ignition of porous systems,” Combust., Expl., Shock Waves, 29, No.6, 663–667 (1993).Google Scholar
  10. 10.
    R. S. Burkina, “Ignition of porous, solid radiation source,” Combust., Expl., Shock Waves, 31, No.6, 627–634 (1995).Google Scholar
  11. 11.
    R. S. Burkina and A. M. Timokhin, “Regimes of ignition of a porous body using a heat flux,” Combust., Expl., Shock Waves, 32, No.1, 16–21 (1996).Google Scholar
  12. 12.
    R. S. Burkina and E. A. Kozlov, “Hot-spot thermal ignition in a porous medium under conditions of natural gas filtration,” Combust., Expl., Shock Waves, 37, No.2, 153–158 (2001).Google Scholar
  13. 13.
    R. Collins, Flow of Fluids Through Porous Materials, Reinhold, New York (1961).Google Scholar
  14. 14.
    M. E. Aerov, O. M. Todes, and D. A. Narinsky, Models with a Stationary Grainy Layer [in Russian], Khimiya, Moscow (1979).Google Scholar
  15. 15.
    M. V. Fedoryuk, Asymptotics: Integrals and Series [in Russian], Nauka, Moscow (1987).Google Scholar
  16. 16.
    Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).Google Scholar
  17. 17.
    H. Kuchking, Physik, Fachbuchverlag, Leipzig (1980).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • R. S. Burkina
    • 1
  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations