Advertisement

Combustion, Explosion and Shock Waves

, Volume 41, Issue 4, pp 481–483 | Cite as

Microwave Radiation from Combustion of an Iron-Aluminum Thermite Mixture

  • V. S. Korogodov
  • A. I. Kirdyashkin
  • Yu. M. Maksimov
  • A. A. Trunov
  • R. M. Gabbasov
Urgent Communication

Abstract

Nonequilibrium microwave radiation from the combustion wave of the Fe2O3-Al powder system in the frequency range of 3.4–37.5 GHz was recorded. It is found that the radiation power is proportional to the free-surface area of the reaction products and is 4–7 orders of magnitude higher than the thermal-radiation level in the same wavelength interval. A possible mechanism of the electromagnetic emission is the Bremsstrahlung of the mobile electrons released by the condensed-phase surface.

Key words

combustion heterogeneous system superhigh frequency radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. A. Kudryashov, A. S. Mukasyan, and I. A. Filimonov, “Chemoionization waves in heterogeneous combustion processes,” J. Mater. Process., 4, No.5, 353–358 (1996).Google Scholar
  2. 2.
    Yu. M. Maksimov, A. I. Kirdyashkin, V. S. Korogodov, and V. L. Polyakov, “Generation and transfer of an electric charge in self-propagating high-temperature synthesis using the Co-S system as an example,” Combust., Expl., Shock Waves, 36, No.5, 670–673 (2000).Google Scholar
  3. 3.
    A. I. Kirdyashkin, Yu. M. Maksimov, V. S. Korogodov, and V. L. Polyakov, “Nonequilibrium electrophysical phenomena in SHS processes,” Dokl. Ross. Akad. Nauk, 381, No.1, 66–68 (2001).Google Scholar
  4. 4.
    A. I. Kirdyashkin, V. L. Polyakov, Yu. M. Maksimov, and V. S. Korogodov, “Specific features of electric phenomena in self-propagating high-temperature synthesis,” Combust., Expl., Shock Waves, 40, No.2, 180–185 (2004).Google Scholar
  5. 5.
    O. K. Kamynina, N. I. Kidin, V. A. Kudryashov, et al., “Formation of low-temperature plasma during SHS process,” Int. J. SHS, 10, No.1, 55–62 (2001).Google Scholar
  6. 6.
    A. E. Basharinov, L. T. Tuchkov, V. M. Polyakov, and N. I. Ananov, Measuring Radiothermal and Plasma Radiations in the Microwave Range [in Russian], Sov. Radio, Moscow (1968).Google Scholar
  7. 7.
    A. A. Borisov, S. I. Sumskoi, P. V. Komissarov, et al., “Electrical and emission properties of the explosion products of high-melting heterogeneous explosives,” Khim. Fiz., 21, No.11, 52–63 (2002).Google Scholar
  8. 8.
    N. P. Novikov, I. P. Borovinskaya, and A. G. Merzhanov, “Thermodynamic analysis of self-propagating high-temperature synthesis,” in: Combustion Processes in Chemical Technology and Metallurgy [in Russian], Joint Inst. of Chem. Phys., Chernogolovka (1975), pp. 174–187.Google Scholar
  9. 9.
    A. P. Babichev, N. A. Babushina, et al., Physical Quantities: Reference Book [in Russian], Energoatomizdat, Moscow (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. S. Korogodov
    • 1
  • A. I. Kirdyashkin
    • 1
  • Yu. M. Maksimov
    • 1
  • A. A. Trunov
    • 1
  • R. M. Gabbasov
    • 1
  1. 1.Department of Structural Macrokinetics of the Tomsk Scientific Center, Siberian DivisionRussian Academy of SciencesTomskRussia

Personalised recommendations