Advertisement

Combustion, Explosion and Shock Waves

, Volume 41, Issue 3, pp 241–263 | Cite as

Pulsed Loading of Objects during Intense Expansion of Products of Explosion of Solid Explosives (Review)

  • E. E. Lin
Article

Abstract

Specific features of pulsed loading of objects during intense expansion of explosion products of solid explosives are considered. Parameters of the semi-empirical equation of state of explosion products in the density range that has not been adequately considered are given. Results of experimental investigations of reflection of unsteady shock waves from a rigid wall and their effect on thin targets are summarized. Processes that occur under moderate-intensity dynamic impacts on solid and porous media are described: multiple collisions of solids with rigid targets, shock-induced coalescence of nanodiamonds, and emission effects due to expansion of explosion products into an evacuated volume, air, and inert gas.

Key words

explosion products intense expansion pulsed loading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (eds.), Shock Waves and Extreme States of Matter [in Russian], Nauka, Moscow (2000).Google Scholar
  2. 2.
    L. P. Orlenko (ed.), Physics of Explosion [in Russian], Fizmatlit, Moscow (2002).Google Scholar
  3. 3.
    W. Baker et al., Explosion Hazard and Evaluation, Elsevier, Amsterdam (1983).Google Scholar
  4. 4.
    A. I. Mikhailin, A. V. Orlov, A. I. Sadyrin, and M. V. Sil’nikov, “Principles of attenuation of the hazardous factors of explosion,” in: R. I. Il’kaev, E. V. Kulichkova, A. L. Mikhailov, et al. (eds.), Advanced Methods of Design and Testing of Missiles and Artillery Arms, Proc. Conf. Volga Regional Center of the Russian Missile Artillery Academy of Sciences, Izd. Inst. Exp. Fiz., Sarov (2000), pp. 517–521.Google Scholar
  5. 5.
    V. V. Danilenko, Explosive Synthesis and Sintering of Diamond [in Russian], Energoatomizdat, Moscow (2003).Google Scholar
  6. 6.
    M. V. Zhernokletov, V. N. Zubarev, and G. S. Telegin, “Isentropes of expansion of explosion products of condensed HEs,” Prikl. Mekh. Tekh. Fiz., No. 4, 127–132 (1969).Google Scholar
  7. 7.
    R. Schall, “Detonation physics,” in: High-Speed Physics, Springer Verlag, Vienna (1967).Google Scholar
  8. 8.
    K. I. Kozorezov and V. V. Sergeev, “Three-stage isentrope for the expansion of detonation products,” Combust., Expl., Shock Waves, 11, No.1, 89–93 (1975).Google Scholar
  9. 9.
    V. F. Kuropatenko, “Equation of state of detonation products of compact explosives,” Combust., Expl., Shock Waves, 25, No.6, 762–767 (1989).Google Scholar
  10. 10.
    M. A. Sadovskii, “Mechanism of operation of air shock waves on the basis of experimental data,” Fiz. Vzryva, No. 1, 22–110 (1952).Google Scholar
  11. 11.
    V. V. Adushkin and A. I. Korotkov, “Parameters of a shock wave in the vicinity of an HE charge in an air explosion,” Prikl. Mekh. Tekh. Fiz., No. 5, 119–123 (1961).Google Scholar
  12. 12.
    V. V. Adushkin, “Shock-wave formation and spreading of explosion products in air,” Prikl. Mekh. Tekh. Fiz., No. 5, 107–114 (1963).Google Scholar
  13. 13.
    R. E. Daff and A. N. Blackwell, “Explosive shock tubes,” Prib. Nauch. Issled., 37, No.5, 39–46 (1966).Google Scholar
  14. 14.
    D. A. Freiwald, “Approximate blast wave theory and experimental data for shock trajectories in linear explosive-driven shock tubes,” J. Appl. Phys., 43, No.5, 2224–2229 (1972).Google Scholar
  15. 15.
    O. S. Popel’, O. A. Sinkevich, and A. L. Shevchenko, “Shock damping during high-explosive detonation product dispersion into a gas,” Combust., Expl., Shock Waves, 13, No.6, 800–802 (1977).Google Scholar
  16. 16.
    V. E. Shemarulin, V. Yu. Mel’tsas, G. F. Kopytov, et al., “Effect of the method of initiation of a plane charge on the process of formation of a shock wave in a tube,” Combust., Expl., Shock Waves, 18, No.4, 478–482 (1982).Google Scholar
  17. 17.
    K. P. Stanyukovich, Unsteady Motion of Continuous Media [in Russian], Nauka, Moscow (1971).Google Scholar
  18. 18.
    A. Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill, New York-Toronto-London (1950).Google Scholar
  19. 19.
    N. Jones, “Pulsed loading of a simply supported circular rigid-plastic plate,” in: Applied Mechanics, Ser. E (collected scientific papers) [Russian translation], Vol. 35, No.1, 66–73 (1968).Google Scholar
  20. 20.
    T. A. Duffey and S. W. Key, “Experimental-theoretical correlations of impulsively loaded clamped circular plates,” Experim. Mech., 9, No.6, 241–245 (1969).Google Scholar
  21. 21.
    K. P. Stanyukovich (ed.), Physics of Explosion [in Russian], Nauka, Moscow (1975).Google Scholar
  22. 22.
    V. G. Bazhenov and M. A. Batanin, “Investigation of elastoplastic processes of deformation of circular plates under pulsed loading with allowance for large exure,” in: Prikl. Mekh., 14, No.3, 74–78 (1978).Google Scholar
  23. 23.
    L. A. Merzhievskii, V. M. Titov, Yu. I. Fadeenko, and G. A. Shvetsov, “High-speed launching of solid bodies,” Combust., Expl., Shock Waves, 23, No.5, 576–588 (1987).Google Scholar
  24. 24.
    L. A. Merzhievskii and V. M. Titov, “High-speed collision,” Combust., Expl., Shock Waves, 23, No.5, 589–604 (1987).Google Scholar
  25. 25.
    V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Bodies [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (1999)Google Scholar
  26. 26.
    M. Held, “Fragment generator,” Propell., Explos., Pyrotech., 13, 135–143 (1988).Google Scholar
  27. 27.
    E. E. Lin, E. N. Pashchenko, and A. V. Sirenko, “Method of shock testing of an object,” Patent No. 2091746, Byul. Izobr., No. 27 (1997).Google Scholar
  28. 28.
    I. E. Khorev, S. A. Zelepugin, A. A. Konyaev, et al., “Destruction of targets by a group of high-velocity bodies,” Dokl. Ross. Akad. Nauk, 369, No.4, 481–485 (1999).Google Scholar
  29. 29.
    I. E. Khorev, V. K. Yakushev, S. A. Zelepugin, et al., “Acceleration and collision of a group of high-velocity bodies,” Dokl. Ross. Akad. Nauk, 389, No.2, 197–202 (2003).Google Scholar
  30. 30.
    O. V. Roman, S. K. Andilevko, S. S. Karpenko, et al., “Effect of superdeep penetration. State of the art and prospects (review),” Inzh.-Fiz. Zh., 75, No.4, 187–199 (2002).Google Scholar
  31. 31.
    S. N. Buravova, “Effect of focusing of unloading waves and damage of a target under the action of a flux of particles,” Pis’ma Zh. Tekh. Fiz., 15, No.17, 63–67 (1989).Google Scholar
  32. 32.
    S. N. Buravova, “Spalling model of erosion wear of the surface under the action of a ux of particles,” Zh. Tekh. Fiz., 62, No.8, 58–66 (1992).Google Scholar
  33. 33.
    O. Naimark, F. Collombet, and J.-L. Lataillade, “Superdeep penetration phenomena as resonance excitation of self-keeping spall failure in impacted materials,” J. Phys. IV, France, 7, 773–778 (1997).Google Scholar
  34. 34.
    S. S. Grigoryan, “Nature of superdeep penetration of solid microparticles into solid materials,” Dokl. Akad. Nauk SSSR, 292, No.6, 1319–1322 (1987).Google Scholar
  35. 35.
    J. Zukas, T. Nicholas, H. F. Swift, et al., Impact Dynamic, John Wiley, New York (1982).Google Scholar
  36. 36.
    E. E. Lin, V. Yu. Mel’tsas, S. A. Novikov, et al., “Investigation of directed group acceleration of solid fragments by expanding explosive products,” in: Proc. 16th Int. Ballistics Symposium and Exhibition (San Francisco, September 23–27, 1996), Vol. 2 (1996), pp. 651–663.Google Scholar
  37. 37.
    A. M. Staver, N. V. Gubareva, A. I. Lyamkin, and E. A. Petrov, “Ultrafine diamond powders made by the use of explosion energy,” Combust., Expl., Shock Waves, 20, No.5, 567–569 (1984).Google Scholar
  38. 38.
    V. M. Titov, V. F. Anisichkin, and I. Yu. Mal’kov, “Synthesis of ultradispersed diamond in detonation waves,” Combust., Expl., Shock Waves, 25, No.3, 372–379 (1989).Google Scholar
  39. 39.
    K. V. Volkov, V. V. Danilenko, and V. I. Elin, “Synthesis of diamond from the carbon in the detonation products of explosives,” Combust., Expl., Shock Waves, 26, No.3, 366–367 (1990).Google Scholar
  40. 40.
    V. M. Drobyshev, “Detonation synthesis of superhard materials,” Combust., Expl., Shock Waves, 19, No.5, 677–678 (1983).Google Scholar
  41. 41.
    A. M. Staver and A. I. Lyamkin, “Obtaining ultradisperse diamonds from explosives,” in: A. M. Staver (ed.), Ultradisperse Materials. Obtaining and Properties (collected scientific papers) [in Russian], Krasnoyarsk Polytech. Inst., Krasnoyarsk (1990), pp. 3–22.Google Scholar
  42. 42.
    B. A. Vyskubenko, V. V. Danilenko, E. E. Lin, et al., “Effect of scaling on size and yield of diamonds in detonation synthesis,” Fiz. Goreniya Vzryva, 28, No.2, 108–109 (1992).Google Scholar
  43. 43.
    K. Kondo and S. Sawai, “Fabricating nanocrystalline diamond ceramics by a shock compaction method,” J. Am. Ceram. Soc., 73, No.7, 1983–1991 (1990).Google Scholar
  44. 44.
    R. Prummer, Explosivverdichtung Pulvriger Substanzen, Springer Verlag, BRD (1987).Google Scholar
  45. 45.
    E. E. Lin, V. A. Medvedkin, S. A. Novikov, and V. I. Sukharenko, “Method for fabrication of ultradisperse diamond powder,” Patent No. 2090499, Byul. Izobr., No. 26 (1997).Google Scholar
  46. 46.
    V. D. Rogozin, Explosive Processing of Powder Materials [in Russian], Izd. Volgograd. Tekh. Univ., Volgograd (2002).Google Scholar
  47. 47.
    E. E. Lin, A. V. Sirenko, and A. I. Funtikov, “Expansion of the products from a sheet charge in a chamber,” Combust., Expl., Shock Waves, 16, No.4, 472–474 (1980).Google Scholar
  48. 48.
    E. E. Lin, V. A. Mazanov, and A. V. Sirenko, “Experimental determination of the Gruneisen coefficient of explosion products of solid explosives at the stage of intense expansion,” in: Proc. Vth Zababakhin’s Readings, Izd. Inst. Tekh. Phys., Snezhinsk (1999), pp. 216–220.Google Scholar
  49. 49.
    M. N. Makhov, “Determination of the energy content in individual HEs,” Khim. Fiz., 19, No.6, 52–56 (2000).Google Scholar
  50. 50.
    E. E. Lin, “intense expansion of explosion products of solid HEs: Empirical equation of state, pulsed loads, and applications,” in: A. L. Mikhailov (ed.), Extreme States of Matter. Detonation, Shock Waves [in Russian], Proc. III Khariton’s Readings, Inst. Exp. Phys., Sarov (2002), pp. 142–144.Google Scholar
  51. 51.
    E. E. Lin, V. Yu. Mel’tsas, and G. F. Portnyagina, “Comparison of experimental and numerical data on pressure for intense expansion of explosion products in a closed volume,” Tr. Inst. Exp. Fiz., No. 4, Sarov (2003), pp. 266–275.Google Scholar
  52. 52.
    E. E. Lin, A. V. Sirenko, and A. I. Funtikov, “Change in the pressure with time in a reflected shock wave with the explosion of a sheet charge of explosive,” Combust., Expl., Shock Waves, 15, No.2, 275–277 (1979).Google Scholar
  53. 53.
    E. E. Lin and A. I. Funtikov, “Experimental study of shock-wave propagation after explosion of a planar HE charge in a shock tube,” Fiz. Gor. Vzryva, 17, No.5, 137–139 (1981).Google Scholar
  54. 54.
    A. F. Baryshnikov, V. Yu. Kainov, E. E. Lin, et al., “Method of dynamic loading by detonation of a distributed charge of explosive,” Combust., Expl., Shock Waves, 15, No.6, 827–828 (1979).Google Scholar
  55. 55.
    L. I. Kolegov, E. E. Lin, V. T. Ryazanov, and A. I. Funtikov, “Experimental study of the deformation and fracture of circular aluminum plates under the influence of a shock wave,” Combust., Expl., Shock Waves, 32, No.6, 906–909 (1991).Google Scholar
  56. 56.
    E. E. Lin, A. V. Gladtsinov, S. K. Zhabitskii, et al., “Efficiency of the collective action of solids on a target with moderate impact velocities,” Pis’ma Zh. Tekh. Fiz., 31, No.2, 6–12 (2005).Google Scholar
  57. 57.
    L. I. Sedov, Methods of Similarity and Dimension in Mechanics [in Russian], Nauka, Moscow (1967).Google Scholar
  58. 58.
    G. V. Stepanova, “Transient reflection of a plane shock wave from a rigid wall,” Combust., Expl., Shock Waves, 12, No.3, 419-422-471 (1976).Google Scholar
  59. 59.
    S. K. Godunov (ed.), Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).Google Scholar
  60. 60.
    M. L. Vasil’ev, A. V. Gladtsinov, and A. V. Tabachkovskii, “Methodical provision of tests of fragmentation and field arms,” in: R. I. Il’kaev, E. V. Kulichkova, A. L. Mikhailov, et al. (eds.), Advanced Methods of Design and Testing of Missiles and Artillery Arms, Proc. Conf. Volga Regional Center of the Russian Missile Artillery Academy of Sciences, Izd. Inst. Exp. Fiz., Sarov (2000), pp. 276–278.Google Scholar
  61. 61.
    I. S. Grigor’ev and E. Z. Meilikhov (eds.), Physical Quantities: Handbook [in Russian], Energoatomizdat, Moscow (1991).Google Scholar
  62. 62.
    E. E. Lin, V. Yu. Mel’tsas, A. L. Stadnik, and Yu. V. Yanilkin, “Mechanism of the collective action of a flux of solid particles on a target,” Pis’ma Zh. Tekh. Fiz., 28, No.17, 90–94 (2002).Google Scholar
  63. 63.
    E. E. Lin, S. A. Novikov, I. F. Kazakova, et al., “Compacting of ultradisperse diamonds under weak dynamic loading,” in: Proc. IVth Zababakhin’s Readings, Izd. Inst. Tekh. Fiz., Snezhinsk (1995), pp. 192–194.Google Scholar
  64. 64.
    E. E. Lin, S. A. Novikov, A. B. Glushak, et al., “Investigation of conditions for obtaining nanodiamond-based powders and compacts,” in: Proc. V Zababakhin’s Readings, Izd. Inst. Tekh. Fiz., Snezhinsk (1999), pp. 672–678.Google Scholar
  65. 65.
    G. N. Bezrukov, “Diamond,” in: A. M. Prokhorov (ed.), Physical Encyclopedia [in Russian], Vol. 1, Sov. Entsykl., Moscow (1988), pp. 60–62.Google Scholar
  66. 66.
    A. L. Vereshchagin, “Phase diagram of ultrafine carbon,” Combust., Expl., Shock Waves, 38, No.3, 358–359 (2002).Google Scholar
  67. 67.
    E. E. Lin, “Stochastic model of shock-induced growth of crystalline mesosystems in condensed media,” in: Proc. V th Zababakhin’s Readings, Izd. Inst. Tekh. Fiz., Snezhinsk (1999), pp. 679–688.Google Scholar
  68. 68.
    S. A. Novikov, V. A. Petrov, and L. M. Timokhin, “Explosive-type devices for mechanical tests of materials and structures,” Fiz. Goreniya Vzryva, 27, No.4, 87–94 (1991).Google Scholar
  69. 69.
    V. I. Bichegov, V. V. Zalesskii, V. A. Mogilev, et al., “Pulsed gas-dynamic facilities for missile and artillery tests in terms of the action of hazardous mechanical factors,” in: R. I. Il’kaev, E. V. Kulichkova, A. L. Mikhailov, et al. (eds.), Advanced Methods of Design and Testing of Missiles and Artillery Arms [in Russian], Proc. Conf. Volga Regional Center of the Russian Missile Artillery Academy of Sciences, Izd. Inst. Exp. Fiz., Sarov (2000), pp. 235–237.Google Scholar
  70. 70.
    A. G. Ivanov, Destruction of Differently Scaled Objects by an Explosion [in Russian], Izd. Inst. Exp. Fiz., Sarov (2001).Google Scholar
  71. 71.
    V. A. Mogilev, G. F. Kopytov, V. A. Poddubnyi, et al., “Generation of air shock waves in explosive shock tubes,” in: R. I. Il’kaev (ed.), Advanced Methods of Design and Testing of Missiles and Artillery Arms [in Russian], Proc. Conf. Volga Regional Center of the Russian Missile Artillery Academy of Sciences, Izd. Inst. Exp. Fiz., Sarov (2003), pp. 133–139.Google Scholar
  72. 72.
    A. G. Ivanov, M. A. Syrunin, G. S. Telegin, et al. “Method for increasing safety of nuclear arms,” Patent No. 2065222, Byul. Izobr., No. 22 (1996).Google Scholar
  73. 73.
    V. M. Loborev, A. V. Ostrik, V. P. Petrovskii, and A. A. Cheprunov, Methods of Modeling Mechanical Action of Radiation on Materials and Structures [in Russian], Central Physicotechnical Institute, Ministry of Defence of the Russian Federation, Sergiev Posad (1997).Google Scholar
  74. 74.
    V. K. Yakushev, “Ejection of a body from a container with supersonic ight velocities,” in: R. I. Il’kaev (ed.), Advanced Methods of Design and Testing of Missiles and Artillery Arms [in Russian], Proc. Conf. Volga Regional Center of the Russian Missile Artillery Academy of Sciences, Izd. Inst. Exp. Fiz., Sarov (2003), pp. 189–192.Google Scholar
  75. 75.
    B. I. Abashkin, D. L. Gur’ev, I. N. Ermilov, et al., “Effect of a low-amplitude shock wave with residual pressure on hexagonal boron nitride,” Combust., Expl., Shock Waves, 33, No.5, 614–618 (1997).Google Scholar
  76. 76.
    D. S. Dolgushin, V. F. Anisichkin, and V. F. Komarov, “Shock densification of ultradispersed diamond,” Combust., Expl., Shock Waves, 35, No.3, 348–350 (1999).Google Scholar
  77. 77.
    A. A. Deribas, P. A. Simonov, V. N. Filimonenko, and A. A. Shtertser, “Long-pulse explosive compaction of a diamond powder,” Combust., Expl., Shock Waves, 36, No.6, 758–770 (2000).Google Scholar
  78. 78.
    V. V. Pokropivnyi, V. V. Skorokhod, A. V. Pokropivnyi, and Yu. G. Krasnikov, “Modeling of shock generation of hypersonic phonons and resonance principle of activation of nanopowder compaction,” Pis’ma Zh. Tekh. Fiz., 23, No.12, 81–84 (1997).Google Scholar
  79. 79.
    E. E. Lin, “Shock-induced growth of crystals in a porous medium consisting of nanodiamonds,” Khim. Fiz., 16, No.12, 113–115 (1997).Google Scholar
  80. 80.
    M. V. Baidakova, A. Ya. Vul’, V. I. Siklitskii, and N. N. Faleev, “Fractal structure of nanodisperse diamond clusters,” Fiz. Tverd. Tela, 40, No.4, 776–780 (1998).Google Scholar
  81. 81.
    S. S. Batsanov, V. A. Vazyulin, L. I. Kopaneva, et al., “Shock pressing of the diamond powder,” Fiz. Goreniya Vzryva, 27, No.4, 139 (1991).Google Scholar
  82. 82.
    R. A. Andrievskii, “State of development and prospects in the field of powdered nanostructured materials,” in: V. E. Red’kin (ed.), Ultradisperse Powders, Nanostructures, and Materials, Proc. 2nd Conf. (October 5–7, 1999), Izd. Krasnoyarsk. Tekh. Univ., Krasnoyarsk (1999), pp. 190–196.Google Scholar
  83. 83.
    G. N. Bezrukov, V. P. Butuzov, and M. I. Samoilovich, Synthetic Diamond [in Russian], Nedra, Moscow (1976).Google Scholar
  84. 84.
    B. A. Vyskubenko, E. E. Lin, and A. V. Sirenko, “Possibility of registering luminescence of ultradisperse diamonds in a detonation wave,” Fiz. Goreniya Vzryva, 29, No.1, 134–135 (1993).Google Scholar
  85. 85.
    A. V. Sirenko, E. E. Lin, and E. N. Pashchenko, “Light source based on an explosion shock tube with a xenon density step,” Combust., Expl., Shock Waves, 35, No.3, 341–344 (1999).Google Scholar
  86. 86.
    A. L. Vereshchagin, G. V. Sakovich, P. M. Brylyakov, et al., “Structure of the diamond-like phase of carbon produced by detonation synthesis,” Dokl. Akad. Nauk SSSR, 314, No.4, 866–867 (1990).Google Scholar
  87. 87.
    E. E. Lin, “Cluster mechanism of diamond synthesis from various forms of carbon,” Fiz. Tverd. Tela, 42, No.10, 1893–1898 (2000).Google Scholar
  88. 88.
    V. F. Anisichkin, D. S. Dolgushin, and E. A. Petrov, “The effect of temperature on the growth of ultradispersed diamonds at a detonation front,” Combust., Expl., Shock Waves, 31, No.1, 106–109 (1995).Google Scholar
  89. 89.
    S. A. Gubin, V. I. Pepekin, and V. V. Odintsov, “Thermodynamic calculation of detonation parameters,” in: Combustion, Detonation, Shock Waves, Proc. Zel’dovich Memorial Int. Conf. on Combustion (September 12–17, 1994), Moscow (1995), pp. 434–442.Google Scholar
  90. 90.
    I. Yu. Mal’kov, “Coagulation of carbon under conditions of unsteady flows of detonation products,” Fiz. Goreniya Vzryva, 31, No.1, 155–157 (1994).Google Scholar
  91. 91.
    A. L. Vereshchagin, Detonation Nanodiamonds [in Russian], Izd. Altaisk. Tekh. Univ., Biisk (2001).Google Scholar
  92. 92.
    V. M. Titov, V. M. Aul’chenko, O. V. Evdokimov, et al., “Determination of parameters of nanostructures during HE detonation with the help of low-angle scattering of polychromatic synchrotron radiation,” in: A. L. Mikhailov (ed.), Substances, Materials, and Structures under Intense Dynamic Actions, Proc. Vth Khariton’s Readings, Izd. Inst. Exp. Fiz., Sarov (2003), pp. 261–264.Google Scholar
  93. 93.
    A. L. Vereshchagin, “Transformations of detonation nanodiamonds in interstellar space,” in: V. F. Petrunin (ed.), Physics and Chemistry of Ultradisperse (Nanosize) Systems, Proc. VI Conf. (August 18–22, 2003, Tomsk), Izd. Mosk. Inzh.-Fiz. Inst., Moscow (2003), pp. 261–265.Google Scholar
  94. 94.
    I. G. Namyatov and V. I. Babushok, “Critical conditions for explosive decomposition of ozone under UV light of constant intensity,” Combust., Expl., Shock Waves, 32, No.3, 270–275 (1996).Google Scholar
  95. 95.
    V. I. Babushok, S. S. Minaev, and I. G. Namyatov, “Propagation of a chemical-reaction wave under UV radiation,” Combust., Expl., Shock Waves, 32, No.4, 386–389 (1996).Google Scholar
  96. 96.
    V. M. Loborev, B. V. Zamyshlyaev, E. P. Maslin, and B. A. Shilobreev (eds.), Physics of Nuclear Explosion, Vol. 1: Explosion Development [in Russian], Fizmatgiz-Nauka, Moscow (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. E. Lin
    • 1
  1. 1.Institute of Experimental PhysicsRussian Federal Nuclear CenterSarovRussia

Personalised recommendations