Skip to main content
Log in

Simulating the propagation of exothermic reactions in heterogeneous media

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

An approach to simulating exothermic chemical reactions based on the concept of cellular automata is described. The validity of the approach is analyzed using the results of simulating the propagation of the reaction front during self-propagating high-temperature synthesis in the Ni-Al system. Good agreement is obtained between simulated and experimental dependences of the propagation velocity of the front and the maximum combustion temperature on the initial heating temperature of the powder mixture. It is concluded that a correct description of the effect of porosity on the course of the exothermic reaction requires explicit allowance for the reaction kinetics, in particular, the spreading of the liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Merzhanov, Solid Flame Combustion, Inst. of Struct. Macrokinet. and Mater. Sci., Chernogolovka (2000).

    Google Scholar 

  2. A. E. Sychev (ed.), Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Izd. Territoriya, Chernogolovka, (2001).

    Google Scholar 

  3. Z. A. Munir and U. Anselmi-Tamburini, “Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion,” Mater. Sci. Rep., 3, No.78, 277–365 (1989).

    Article  CAS  Google Scholar 

  4. A. G. Merzhanov, “Solid flames: Discoveries, concepts and horizons of cognition,” Combust. Sci. Technol., 91, Nos. 4–6, 307–336 (1994).

    Google Scholar 

  5. A. Varma and J.-P. Lebrat, “Combustion synthesis of advanced materials,” Chem. Eng. Sci., 47, Nos. 9–11, 2179–2194 (1992).

    Article  CAS  Google Scholar 

  6. E. Dunbar, N. N. Thandhani, and R. A. Graham, “High-pressure shock activation and mixing of nickel-aluminum powder mixtures,” J. Mater. Sci., No. 28, 2903–2914 (1993).

    Google Scholar 

  7. S. A. Astapchik, A. G. Merzhanov, E. P. Podvoiskii, et al., “Stochastic model of gasless combustion,” Dokl. Ross. Akad. Nauk SSSR, 318, No.3, 609–614 (1991).

    CAS  Google Scholar 

  8. A. Yu. Loskutov and A. S. Mikhailov, Introduction to Synergetics, Handbook [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  9. J. von Neumann, Theory of Self-Reproducing Automata, Illinois Press, Urbana (1966)

    Google Scholar 

  10. T. Toffoli and N. Margolus, Cellular Automata Machines, MIT Press, Cambridge (1987).

    Google Scholar 

  11. S. Wolfram, Theory and Application of Cellular Automata, World Sci., Singapur (1986).

    Google Scholar 

  12. J. A. Sekhar and M. Lakshmikantha, “Analytical modeling of the propagation of a thermal reaction front in condensed systems,” J. Amer. Ceram. Soc., 77, No.1, 202–210. (1994)

    Article  Google Scholar 

  13. S. G. Psakh’e, E. V. Shil’ko, and S. I. Negreskul, “Describing the motion of the front of an exothermic reaction in a powder medium,” Pis’ma Zh. Tekh. Fiz., 20, No.2, 35–39 (1994).

    CAS  Google Scholar 

  14. S. G. Psakh’e, E. V. Shil’ko, and S. I. Negreskul, “Motion of the front of an exothermic reaction in a powder medium,” Poroshk. Metal., No. 5/6, 70–74 (1995).

    Google Scholar 

  15. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds [in Russian], Izd. Tomsk Univ., Tomsk (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 2, pp. 38–44, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimaki, A.V., Shil’ko, E.V. & Psakh’e, S.G. Simulating the propagation of exothermic reactions in heterogeneous media. Combust Explos Shock Waves 41, 151–157 (2005). https://doi.org/10.1007/s10573-005-0017-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0017-z

Key words

Navigation