Combustion, Explosion and Shock Waves

, Volume 41, Issue 2, pp 151–157 | Cite as

Simulating the propagation of exothermic reactions in heterogeneous media

  • A. V. Dimaki
  • E. V. Shil’ko
  • S. G. Psakh’e


An approach to simulating exothermic chemical reactions based on the concept of cellular automata is described. The validity of the approach is analyzed using the results of simulating the propagation of the reaction front during self-propagating high-temperature synthesis in the Ni-Al system. Good agreement is obtained between simulated and experimental dependences of the propagation velocity of the front and the maximum combustion temperature on the initial heating temperature of the powder mixture. It is concluded that a correct description of the effect of porosity on the course of the exothermic reaction requires explicit allowance for the reaction kinetics, in particular, the spreading of the liquid phase.

Key words

self-propagating high-temperature synthesis front of an exothermic reaction cellular-automata method computer simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Merzhanov, Solid Flame Combustion, Inst. of Struct. Macrokinet. and Mater. Sci., Chernogolovka (2000).Google Scholar
  2. 2.
    A. E. Sychev (ed.), Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Izd. Territoriya, Chernogolovka, (2001).Google Scholar
  3. 3.
    Z. A. Munir and U. Anselmi-Tamburini, “Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion,” Mater. Sci. Rep., 3, No.78, 277–365 (1989).CrossRefGoogle Scholar
  4. 4.
    A. G. Merzhanov, “Solid flames: Discoveries, concepts and horizons of cognition,” Combust. Sci. Technol., 91, Nos. 4–6, 307–336 (1994).Google Scholar
  5. 5.
    A. Varma and J.-P. Lebrat, “Combustion synthesis of advanced materials,” Chem. Eng. Sci., 47, Nos. 9–11, 2179–2194 (1992).CrossRefGoogle Scholar
  6. 6.
    E. Dunbar, N. N. Thandhani, and R. A. Graham, “High-pressure shock activation and mixing of nickel-aluminum powder mixtures,” J. Mater. Sci., No. 28, 2903–2914 (1993).Google Scholar
  7. 7.
    S. A. Astapchik, A. G. Merzhanov, E. P. Podvoiskii, et al., “Stochastic model of gasless combustion,” Dokl. Ross. Akad. Nauk SSSR, 318, No.3, 609–614 (1991).Google Scholar
  8. 8.
    A. Yu. Loskutov and A. S. Mikhailov, Introduction to Synergetics, Handbook [in Russian], Nauka, Moscow (1990).Google Scholar
  9. 9.
    J. von Neumann, Theory of Self-Reproducing Automata, Illinois Press, Urbana (1966)Google Scholar
  10. 10.
    T. Toffoli and N. Margolus, Cellular Automata Machines, MIT Press, Cambridge (1987).Google Scholar
  11. 11.
    S. Wolfram, Theory and Application of Cellular Automata, World Sci., Singapur (1986).Google Scholar
  12. 12.
    J. A. Sekhar and M. Lakshmikantha, “Analytical modeling of the propagation of a thermal reaction front in condensed systems,” J. Amer. Ceram. Soc., 77, No.1, 202–210. (1994)CrossRefGoogle Scholar
  13. 13.
    S. G. Psakh’e, E. V. Shil’ko, and S. I. Negreskul, “Describing the motion of the front of an exothermic reaction in a powder medium,” Pis’ma Zh. Tekh. Fiz., 20, No.2, 35–39 (1994).Google Scholar
  14. 14.
    S. G. Psakh’e, E. V. Shil’ko, and S. I. Negreskul, “Motion of the front of an exothermic reaction in a powder medium,” Poroshk. Metal., No. 5/6, 70–74 (1995).Google Scholar
  15. 15.
    V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds [in Russian], Izd. Tomsk Univ., Tomsk (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. V. Dimaki
    • 1
  • E. V. Shil’ko
    • 1
  • S. G. Psakh’e
    • 1
  1. 1.Institute of Physics of Strength and Materials Science, Siberian DivisionRussian Academy of SciencesTomsk

Personalised recommendations