Roles and Interaction of the MAPK Signaling Cascade in Aβ25–35-Induced Neurotoxicity Using an Isolated Primary Hippocampal Cell Culture System

Abstract

Alzheimer's disease (AD) is characterized with increased formation of amyloid-β (Aβ) in the brain. Aβ peptide toxicity is associated with disturbances of several intracellular signaling pathways such as mitogen activated protein kinases (MAPKs). The aim of this study was to investigate the role of MAPKs and their interactions in Aβ-induced neurotoxicity using isolated hippocampal neurons from the rat. Primary hippocampal cells were cultured in neurobasal medium for 4 days. Cells were treated with Aβ25–35 and/or MAPKs inhibitors for 24 h. Cell viability was determined by an MTT assay and phosphorylated levels of P38, JNK, and ERK were measured by Western blots. Aβ treatment (10–40 µM) significantly decreased hippocampal cell viability in a dose-dependent manner. Inhibition of P38 and ERK did not restore cell viability, while JNK inhibition potentiated the Aβ-induced neurotoxicity. Compared to the controls, Aβ treatment increased levels of phosphorylated JNK, ERK, and c-Jun, while it had no effect on levels of phosphorylated P38. In addition, P38 inhibition led to decreased expression levels of phosphorylated ERK; inhibition of JNK resulted in decreased expression of c-Jun; and inhibition of ERK, decreased phosphorylated levels of JNK. These results strongly suggest that P38, ERK, and JNK are not independently involved in Aβ-induced toxicity in the hippocampal cells. In AD, which is a multifactorial disease, inhibiting a single member of the MAPK signaling pathway, does not seem to be sufficient to mitigate Aβ-induced toxicity and thus their interactions with each other or potentially with different signaling pathways should be taken into account.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ (2011) Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation 8:79

    CAS  Article  Google Scholar 

  2. Barancik M, Bohacova V, Kvackajova J, Hudecova S, Krizanova O, Breier A (2001) SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur J Pharm Sci 14:29–36

    Article  Google Scholar 

  3. Barančıḱ M, Boháčová V, Kvačkajová J, Hudecová S, Križanová OG, Breier A(2001) SB203580, a specific inhibitor of p38-MAPK pathway, is a new reversal agent of P-glycoprotein-mediated multidrug resistance. Eur J Pharm Sci 14:29–36

    Article  Google Scholar 

  4. Birkenkamp KU, Tuyt LM, Lummen C, Wierenga AT, Kruijer W, Vellenga E (2000) The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway. Br J Pharmacol 131:99–107. https://doi.org/10.1038/sj.bjp.0703534

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cameron B, Tse W, Lamb R, Li X, Lamb BT, Landreth GE (2012) Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer's disease. J Neurosci 32:15112–15123. https://doi.org/10.1523/jneurosci.1729-12.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chen J-R et al (2005) Transient versus sustained phosphorylation and nuclear accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. J Biol Chem 280:4632–4638

    CAS  Article  Google Scholar 

  7. Choi W-S et al (2004a) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8-and-9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279:20451–20460

    CAS  Article  Google Scholar 

  8. Choi WS et al (2004b) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279:20451–20460. https://doi.org/10.1074/jbc.M311164200

    CAS  Article  PubMed  Google Scholar 

  9. Correa SA, Eales KL (2012) The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012:649079. https://doi.org/10.1155/2012/649079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Dai HL, Hu WY, Jiang LH, Li L, Gaung XF, Xiao ZC (2016) p38 MAPK inhibition improves synaptic plasticity and memory in angiotensin II-dependent hypertensive mice. Sci Rep 6:27600. https://doi.org/10.1038/srep27600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dvorak Z et al (2008) JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem Pharmacol 75:580–588. https://doi.org/10.1016/j.bcp.2007.09.013

    CAS  Article  PubMed  Google Scholar 

  12. Frasca G, Carbonaro V, Merlo S, Copani A, Sortino MA (2008) Integrins mediate beta-amyloid-induced cell-cycle activation and neuronal death. J Neurosci Res 86:350–355. https://doi.org/10.1002/jnr.21487

    CAS  Article  PubMed  Google Scholar 

  13. Gehart H, Kumpf S, Ittner A, Ricci R (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11:834–840. https://doi.org/10.1038/embor.2010.160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Ghasemi R, Moosavi M, Zarifkar A, Rastegar K, Maghsoudi N (2015) The interplay of Akt and ERK in abeta toxicity and insulin-mediated protection in primary hippocampal cell culture. J Mol Neurosci 57:325–334. https://doi.org/10.1007/s12031-015-0622-6

    CAS  Article  PubMed  Google Scholar 

  15. Gong X, Wang M, Tashiro S-I, Onodera S, Ikejima T (2006) Involvement of JNK-initiated p53 accumulation and phosphorylation of p53 in pseudolaric acid B induced cell death. Exp Mol Med 38:428

    CAS  Article  Google Scholar 

  16. Guo X et al (2010) Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol Med 2:504–515. https://doi.org/10.1002/emmm.201000103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Harrison JC, Zyla TR, Bardes ES, Lew DJ (2004) Stress-specific activation mechanisms for the "cell integrity" MAPK pathway. J Biol Chem 279:2616–2622. https://doi.org/10.1074/jbc.M306110200

    CAS  Article  PubMed  Google Scholar 

  18. Henklova P et al (2008) SB203580, a pharmacological inhibitor of p38 MAP kinase transduction pathway activates ERK and JNK MAP kinases in primary cultures of human hepatocytes. Eur J Pharmacol 593:16–23. https://doi.org/10.1016/j.ejphar.2008.07.007

    CAS  Article  PubMed  Google Scholar 

  19. Hensley K et al (1999) p38 kinase is activated in the Alzheimer's disease brain. J Neurochem 72:2053–2058. https://doi.org/10.1046/j.1471-4159.1999.0722053.x

    CAS  Article  PubMed  Google Scholar 

  20. Hooshmandi E, Ghasemi R, Iloun P, Moosavi M (2019) The neuroprotective effect of agmatine against amyloid beta-induced apoptosis in primary cultured hippocampal cells involving ERK, Akt/GSK-3beta, and TNF-alpha. Mol Biol Rep 46:489–496. https://doi.org/10.1007/s11033-018-4501-4

    CAS  Article  PubMed  Google Scholar 

  21. Hooshmandi E, Moosavi M, Katinger H, Sardab S, Ghasemi R, Maghsoudi N (2020) CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways. Mol Biol Rep 47:2097–2108

    CAS  Article  Google Scholar 

  22. Hooshmandi E et al (2018) CEPO-Fc (An EPO derivative) protects hippocampus against Aβ-induced memory deterioration: a behavioral and molecular study in a rat model of Aβ toxicity. Neuroscience 388:405–417

    CAS  Article  Google Scholar 

  23. Hotamisligil GS, Davis RJ (2016) Cell signaling and stress responses. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006072

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628

    CAS  Article  Google Scholar 

  25. Huang H, Liu H, Yan R, Hu M (2017) PI3K/Akt and ERK/MAPK signaling promote different aspects of neuron survival and axonal regrowth following rat facial nerve axotomy. Neurochem Res 42:3515–3524. https://doi.org/10.1007/s11064-017-2399-1

    CAS  Article  PubMed  Google Scholar 

  26. Iloun P, Abbasnejad Z, Janahmadi M, Ahmadiani A, Ghasemi R (2018) Investigating the role of P38 JNK and ERK in LPS induced hippocampal insulin resistance and spatial memory impairment: effects of insulin treatment. EXCLI J 17:825–839. https://doi.org/10.17179/excli2018-1387

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jahanmahin A, Abbasnejad Z, Haghparast A, Ahmadiani A, Ghasemi R (2019) The effect of intrahippocampal insulin injection on scopolamine-induced spatial memory impairment and extracellular signal-regulated kinases alteration basic. Clin Neurosci 10:23–36. https://doi.org/10.32598/bcn.9.10.165

    CAS  Article  Google Scholar 

  28. Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J Neuroinflammation 5:23. https://doi.org/10.1186/1742-2094-5-23

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912. https://doi.org/10.1126/science.1072682

    CAS  Article  PubMed  Google Scholar 

  30. Joiakim A, Mathieu PA, Palermo C, Gasiewicz TA, Reiners JJ Jr (2003) The Jun N-terminal kinase inhibitor SP600125 is a ligand and antagonist of the aryl hydrocarbon receptor. Drug Metab Dispos 31:1279–1282. https://doi.org/10.1124/dmd.31.11.1279

    CAS  Article  PubMed  Google Scholar 

  31. Juricek L, Coumoul X (2018) The aryl hydrocarbon receptor and the nervous system. Int J Mol Sci. https://doi.org/10.3390/ijms19092504

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25:431–439. https://doi.org/10.1016/s0197-4580(03)00126-x

    CAS  Article  PubMed  Google Scholar 

  33. Kim GJ, Jo HJ, Lee KJ, Choi JW, An JH (2018) Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice. Oncotarget 9:26370–26386. https://doi.org/10.18632/oncotarget.25316

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer's disease. Eneuro. https://doi.org/10.1523/eneuro.0149-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee JK, Kim NJ (2017) Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer's disease. Molecules. https://doi.org/10.3390/molecules22081287

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li G et al (2008) Protective effect of erythropoietin on beta-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Lett 442:143–147. https://doi.org/10.1016/j.neulet.2008.07.007

    CAS  Article  PubMed  Google Scholar 

  37. Makeeva N, Roomans GM, Welsh N (2006) Role of TAB1 in nitric oxide-induced p38 activation in insulin-producing cells. Int J Biol Sci 3:71–76. https://doi.org/10.7150/ijbs.3.71

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mandrekar-Colucci S, Landreth GE (2010) Microglia and inflammation in Alzheimer's disease. CNS Neurol Disord Drug Targ 9:156–167

    CAS  Article  Google Scholar 

  39. Marshall C (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    CAS  Article  Google Scholar 

  40. Medina MG et al (2005) Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 24:1706–1716. https://doi.org/10.1038/sj.emboj.7600650

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Miyamoto-Yamasaki Y, Yamasaki M, Tachibana H, Yamada K (2007) Induction of endoreduplication by a JNK inhibitor SP600125 in human lung carcinoma A 549 cells. Cell Biol Int 31:1501–1506. https://doi.org/10.1016/j.cellbi.2007.07.002

    CAS  Article  PubMed  Google Scholar 

  42. Okada M, Suzuki A, Yamawaki H, Hara Y (2013) Levosimendan inhibits interleukin-1β-induced cell migration and MMP-9 secretion in rat cardiac fibroblasts. Eur J Pharmacol 718:332–339. https://doi.org/10.1016/j.ejphar.2013.08.013

    CAS  Article  PubMed  Google Scholar 

  43. Ramin M, Azizi P, Motamedi F, Haghparast A, Khodagholi F (2011) Inhibition of JNK phosphorylation reverses memory deficit induced by beta-amyloid (1–42) associated with decrease of apoptotic factors. Behav Brain Res 217:424–431. https://doi.org/10.1016/j.bbr.2010.11.017

    CAS  Article  PubMed  Google Scholar 

  44. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29:11982–11992. https://doi.org/10.1523/jneurosci.3158-09.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Ryu HH, Lee YS (2016) Cell type-specific roles of RAS-MAPK signaling in learning and memory: implications in neurodevelopmental disorders. Neurobiol Learn Mem 135:13–21. https://doi.org/10.1016/j.nlm.2016.06.006

    CAS  Article  PubMed  Google Scholar 

  46. Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C (2017) Molecular pathogenesis of Alzheimer's disease: an update. Ann Neurosci 24:46–54

    Article  Google Scholar 

  47. Shanware NP, Williams LM, Bowler MJ, Tibbetts RS (2009) Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190. BMB Rep 42:142–147. https://doi.org/10.5483/bmbrep.2009.42.3.142

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Strniskova M, Barancik M, Ravingerova T (2002) Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys 21:231–255

    CAS  PubMed  Google Scholar 

  49. Subramaniam S, Unsicker K (2010) ERK and cell death: ERK1/2 in neuronal death. FEBS J 277:22–29. https://doi.org/10.1111/j.1742-4658.2009.07367.x

    CAS  Article  PubMed  Google Scholar 

  50. Svensson C, Part K, Kunnis-Beres K, Kaldmae M, Fernaeus SZ, Land T (2011) Pro-survival effects of JNK and p38 MAPK pathways in LPS-induced activation of BV-2 cells. Biochem Biophys Res Commun 406:488–492. https://doi.org/10.1016/j.bbrc.2011.02.083

    CAS  Article  PubMed  Google Scholar 

  51. Tanemura S, Yamasaki T, Katada T, Nishina H (2010) Utility and limitations of SP600125, an inhibitor of stress-responsive c-Jun N-terminal kinase. Curr Enzyme Inhib 6:26–33

    CAS  Article  Google Scholar 

  52. Teraishi F, Wu S, Zhang L, Guo W, Davis JJ, Dong F, Fang B (2005) Identification of a novel synthetic thiazolidin compound capable of inducing c-Jun NH2-terminal kinase–dependent apoptosis in human colon cancer cells. Cancer Res 65:6380–6387

    CAS  Article  Google Scholar 

  53. Wei J et al (2011) c-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction. J Biol Chem 286:13995–14006. https://doi.org/10.1074/jbc.M110.211334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Wu H, Wang MC, Bohmann D (2009) JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 126:624–637. https://doi.org/10.1016/j.mod.2009.06.1082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Xing B, Bachstetter AD, Van Eldik LJ (2011) Microglial p38alpha MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFalpha. Mol Neurodegener 6:84. https://doi.org/10.1186/1750-1326-6-84

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang L et al (2015) Curcumin improves amyloid beta-peptide (1–42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE 10:e0131525. https://doi.org/10.1371/journal.pone.0131525

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang L, Yu H, Zhao X, Lin X, Tan C, Cao G, Wang Z (2010) Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int 57:547–555. https://doi.org/10.1016/j.neuint.2010.06.021

    CAS  Article  PubMed  Google Scholar 

  58. Zhou L et al (2017) JNK inhibitor alleviates apoptosis of fetal neural stem cells induced by emulsified isoflurane. Oncotarget 8:94009

    Article  Google Scholar 

  59. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech Ageing Dev 123:39–46. https://doi.org/10.1016/s0047-6374(01)00342-6

    CAS  Article  PubMed  Google Scholar 

  60. Zhu X, Lee HG, Raina AK, Perry G, Smith MA (2002) The role of mitogen-activated protein kinase pathways in Alzheimer's disease. Neurosignals 11:270–281. https://doi.org/10.1159/000067426

    CAS  Article  PubMed  Google Scholar 

  61. Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319:991–997. https://doi.org/10.1124/jpet.106.107367

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This article is a part of the thesis written by Mrs "Parisa Iloun" in School of Medicine (Registration No: 558) Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

This study was funded by Grant (No. 958343) from National Institute for Medical Research Development, Tehran, Iran.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. PI, EH, and RG contributed in the material preparation, data collection, and analysis. The first draft of the manuscript was written by PI, EH, and SG. AA and KK commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rasoul Ghasemi or Abolhassan Ahmadiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iloun, P., Hooshmandi, E., Gheibi, S. et al. Roles and Interaction of the MAPK Signaling Cascade in Aβ25–35-Induced Neurotoxicity Using an Isolated Primary Hippocampal Cell Culture System. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00912-4

Download citation

Keywords

  • Alzheimer disease
  • MAPK signaling pathway
  • Amyloid-β
  • P38
  • ERK
  • JNK