Mesenchymal Stem Cells Ameliorate Cuprizone-Induced Demyelination by Targeting Oxidative Stress and Mitochondrial Dysfunction

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The main causes of MS disease progression, demyelination, and tissue damage are oxidative stress and mitochondrial dysfunction. Hence, the latter are considered as important therapeutic targets. Recent studies have demonstrated that mesenchymal stem cells (MSCs) possess antioxidative properties and are able to target mitochondrial dysfunction. Therefore, we investigated the effect of transplanting Wharton’s jelly-derived MSCs in a demyelination mouse model of MS in which mice were fed cuprizone (CPZ) for 12 weeks. CPZ is a copper chelator that impairs the activity of cytochrome oxidase, decreases oxidative phosphorylation, and produces degenerative changes in oligodendrocytes, leading to toxic demyelination similar to those found in MS patients. Results showed that MSCs caused a significant increase in the percentage of myelinated areas and in the number of myelinated fibers in the corpus callosum of the CPZ + MSC group, compared to the CPZ group, as assessed by Luxol fast blue staining and transmission electron microscopy. In addition, transplantation of MSCs significantly increased the number of oligodendrocytes while decreasing astrogliosis and microgliosis in the corpus callosum of the CPZ + MSC group, evaluated by immunofluorescence. Moreover, the mechanism by which MSCs exert these physiological effects was found to be through abolishing the effect of CPZ on oxidative stress markers and mitochondrial dysfunction. Indeed, malondialdehyde significantly decreased while glutathione and superoxide dismutase significantly increased in CPZ + MSC mice group, in comparison witth the CPZ group alone. Furthermore, cell therapy with MSC transplantation increased the expression levels of mitochondrial biogenesis transcripts PGC1α, NRF1, MFN2, and TFAM. In summary, these results demonstrate that MSCs may attenuate MS by promoting an antioxidant response, reducing oxidative stress, and improving mitochondrial homeostasis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Code Availability

In this study, we used imageJ (ImageJ, RRID:SCR_003070) and GraphPad Prism (GraphPad Prism, RRID:SCR_002798) softwares. We also used anti-olig2 (Millipore Cat# AB9610, RRID:AB_570666), anti-GFAP ( Abcam Cat# ab7260, RRID:AB_305808), and anti-Iba1 (Wako Cat# 019–19741, RRID:AB_839504) antibodies.

References

  1. Abrams MB, Dominguez C, Pernold K, Reger R, Wiesenfeld-Hallin Z, Olson L, Prockop D (2009) Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci 27:307–321

    PubMed  PubMed Central  Google Scholar 

  2. Ayatollahi M, Hesami Z, Jamshidzadeh A, Gramizadeh B (2014) Antioxidant effects of bone marrow mesenchymal stem cell against carbon tetrachloride-induced oxidative damage in rat livers. Int J Organ Transplant Med 5:166

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barati S, Kashani IR, Tahmasebi F, Mehrabi S, Joghataei MT (2019) Effect of mesenchymal stem cells on glial cells population in cuprizone induced demyelination model. Neuropeptides 75:75–84

    CAS  Google Scholar 

  4. Brooks C, Cho S-G, Wang C-Y, Yang T, Dong Z (2010) Fragmented mitochondria are sensitized to bax insertion and activation during apoptosis. Am J Physiol Cell Physiol 300:C447–C455

    PubMed  PubMed Central  Google Scholar 

  5. Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. https://doi.org/10.1155/2015/394917

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chi H, Guan Y, Li F, Chen Z (2019) The effect of human umbilical cord mesenchymal stromal cells in protection of dopaminergic neurons from apoptosis by reducing oxidative stress in the early stage of a 6-OHDA-induced Parkinson’s disease model. Cell Transplant 28:87S

    PubMed  PubMed Central  Google Scholar 

  7. Clarner T et al (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60:1468–1480

    PubMed  PubMed Central  Google Scholar 

  8. Cruz-Martinez P et al (2016) Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model. Cell Death Dis 7:e2223

    CAS  PubMed  PubMed Central  Google Scholar 

  9. da Costa GF et al (2017) Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 39:613–622

    Google Scholar 

  10. Dantuma E, Merchant S, Sugaya K (2010) Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res Ther 1:37

    PubMed  PubMed Central  Google Scholar 

  11. Ekstrand MI et al (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. New Engl J Med 354:942–955

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, Oury TD (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 283:6058–6066

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Geng X et al (2017) Biological membrane-packed mesenchymal stem cells treat acute kidney disease by ameliorating mitochondrial-related apoptosis. Sci Rep 7:41136

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA (2017) Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study. Mol Neurobiol 54:3219–3229

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldberg JL, Barres BA (2000) The relationship between neuronal survival and regeneration. Annu Rev Neurosci 23:579–612

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int. https://doi.org/10.1155/2016/2093940

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hedayatpour A et al (2013) Promotion of remyelination by adipose mesenchymal stem cell transplantation in a cuprizone model of multiple sclerosis. Cell J (Yakhteh) 15:142

    CAS  Google Scholar 

  19. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regener Med 5:933–946

    Google Scholar 

  20. Kang C, Ji LL (2013) Role of PGC-1α in muscle function and aging. J Sport Health Sci 2:81–86

    Google Scholar 

  21. Kang Z et al (2012) IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. J Neurosci 32:8284–8292

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    CAS  Google Scholar 

  23. Karussis D et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    PubMed  PubMed Central  Google Scholar 

  24. Kashani IR et al (2014) Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res 232:2835–2846

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kemp K, Gray E, Mallam E, Scolding N, Wilkins A (2010a) Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Rev Rep 6:548–559

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A (2010b) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 114:1569–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Khaldoyanidi S (2008) Directing stem cell homing. Cell Stem Cell 2:198–200

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kieseier BC, Stüve O (2011) A critical appraisal of treatment decisions in multiple sclerosis—old versus new. Nat Rev Neurol 7:255

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim J-H et al (2008) The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: role of H2O2 in NF-κB activation. Free Radic Biol Med 45:885–896

    CAS  PubMed  Google Scholar 

  30. Kim YJ et al (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57:13–23

    PubMed  PubMed Central  Google Scholar 

  31. Largani SHH et al (2019) Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J Mol Histol 50:263–271

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Laurila JP, Laatikainen LE, Castellone MD, Laukkanen MO (2009) SOD3 reduces inflammatory cell migration by regulating adhesion molecule and cytokine expression. PLoS ONE 4:e5786

    PubMed  PubMed Central  Google Scholar 

  33. Liesa M et al (2008) Mitochondrial fusion is increased by the nuclear coactivator PGC-1β. PLoS ONE 3:e3613

    PubMed  PubMed Central  Google Scholar 

  34. Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mao P, Reddy PH (2010) Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta (BBA) Mol Basis Dis 1802:66–79

    CAS  Google Scholar 

  36. McManus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J Neurosci 31:15703–15715

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nahirnyj A, Livne-Bar I, Guo X, Sivak JM (2013) ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation. PLoS ONE 8:e83049

    PubMed  PubMed Central  Google Scholar 

  38. Nessler J et al (2013) Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS ONE 8:e69795

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohno N et al (2014) Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci 111:9953–9958

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ortiz GG et al (2016) Multiple sclerosis and its relationship with oxidative stress, glutathione redox system, ATPase system, and membrane fluidity. Trending Top Mult Scler 5:150–166

    Google Scholar 

  41. Ozdemir D et al (2005) Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res 54:631

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng X et al (2013) Human umbilical cord mesenchymal stem cells attenuate cisplatin-induced acute and chronic renal injury. Exp Biol Med 238:960–970

    Google Scholar 

  43. Perico L et al (2017a) Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 8:983

    PubMed  PubMed Central  Google Scholar 

  44. Perico L et al (2017b) Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 8:1–17

    CAS  Google Scholar 

  45. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    CAS  Google Scholar 

  46. Rad F, Ghorbani M, Roushandeh AM, Roudkenar MH (2019) Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep 46:1533–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rivera FJ, Aigner L (2012) Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis. Biol Res 45:257–268

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosset P, Deschaseaux F, Layrolle P (2014) Cell therapy for bone repair. Orthop Traumatol Surg Res 100:S107–S112

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sághy É et al (2016) TRPA1 deficiency is protective in cuprizone-induced demyelination—a new target against oligodendrocyte apoptosis. Glia 64:2166–2180

    PubMed  PubMed Central  Google Scholar 

  50. Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Abdollahi M, Sharifzadeh M, Ravan H (2016) Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of microgliosis and down-regulation of CCL2 and CCL3 pro-inflammatory chemokines. Cell Mol Biol 62:24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim et Biophys Acta (BBA) Mol Cell Res 1813:1269–1278

    CAS  Google Scholar 

  52. Shalaby SM et al (2014) Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli–induced acute lung injury in mice. Cytotherapy 16:764–775

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Smirnova L, Krotenko N, Grishko E, Krotenko N, Alifirova V, Ivanova S (2011) The state of the antioxidant system during therapy of patients with multiple sclerosis. Biochem (Moscow) Suppl Ser B 5:76

    Google Scholar 

  54. Sözmen EG, Carmichael ST (2014) White matter repair in subcortical stroke. In: Baltan S, Carmichael S, Matute C, Xi G, Zhang J (eds) White matter Injury in stroke and CNS disease. Springer, New York, pp 257–270

    Google Scholar 

  55. Sun T et al (2015) Bone marrow-derived mesenchymal stem cell transplantation ameliorates oxidative stress and restores intestinal mucosal permeability in chemically induced colitis in mice. Am J Transl Res 7:891

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tejedor LS (2015) Central nervous system regeneration approach in the toxic cuprizone model of de-and remyelination: application of mesenchymal stem cells. Tierärztl. Hochsch

  57. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang J et al (2015) Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS ONE 10:e0140551

    PubMed  PubMed Central  Google Scholar 

  59. Yeung AWK et al (2020) Reactive oxygen species (ROS) and their impact in neurodegenerative diseases: literature landscape analysis. Antioxid Redox Signal. https://doi.org/10.1089/ars.2019.7952

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15:4142–4157

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuan Y et al (2016) Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1α pathway. Clin Sci 130:2181–2198

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zendedel A et al (2016) Regulatory effect of triiodothyronine on brain myelination and astrogliosis after cuprizone-induced demyelination in mice. Metab Brain Dis 31:425–433

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Tehran University of Medical Sciences and Health Services, Tehran, Iran (Grant number: 97-03-30-39671), and Lebanese University (2017-25652).

Funding

The current study was supported by a Grant (97-03-30-39671) from the Tehran University of Medical Sciences and Health Services to IRK and a grant from the Lebanese University (2017-25652) to AM.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kazem Zibara or Iraj Ragerdi Kashani.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing financial or non-financial interests.

Ethical Approval

This study was approved by the Ethics Committee (IR.TUMS.MEDICINE.REC.1397.918) of Tehran University of Medical Sciences (Tehran, Iran). Informed consents were signed before collection of human umbilical cords (UC) for isolation of mesenchymal stem cells. The Institutional Animal Care and Use Committee (IACUC) of the Tehran University of Medical Science approved all experiments. Animals were kept in quarantine for approximately 1 week prior to their use. International, national, and institutional guidelines for the care and use of animals were followed. All animals were kept in standard conditions with unlimited access to food and water. Deep anesthesia was employed for animal surgical procedures. Experimental procedures as well as animal housing were carried out in accordance with the European Communities Council Directive (86/609/EEC) and the guidelines of the Iranian Agriculture Ministry.

Consent to Participate

After signing the informed consents, and in order to obtain mesenchymal stem cells, human umbilical cords (UC) were collected from patients undergoing full-term pregnancy and elective for cesarean section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shiri, E., Pasbakhsh, P., Borhani‑Haghighi, M. et al. Mesenchymal Stem Cells Ameliorate Cuprizone-Induced Demyelination by Targeting Oxidative Stress and Mitochondrial Dysfunction. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00910-6

Download citation

Keywords

  • Multiple sclerosis
  • Cuprizone
  • Myelination
  • Oxidative stress
  • Mesenchymal stem cells
  • Mitochondria