LncRNA MIR155HG Promotes Temozolomide Resistance by Activating the Wnt/β-Catenin Pathway Via Binding to PTBP1 in Glioma

Abstract

Temozolomide (TMZ) is widely used for glioma therapy in the clinic. Currently, the development of TMZ resistance has largely led to poor prognosis. However, very little is understood about the role of MIR155HG, as a long noncoding RNA, in TMZ resistance. In our study, MIR155HG level was markedly higher in glioma patients than in normal controls and that poor survival was positively correlated with MIR155HG expression. It was apparent that TMZ sensitivity was promoted by downregulation of MIR155HG, and this could be reversed by MIR155HG overexpression in vivo and in vitro. Furthermore, polypyrimidine tract binding protein 1 (PTBP1) was proven to bind with MIR155HG and to regulate MIR155HG-related TMZ resistance. Mechanistic investigation showed that the expression levels of both MIR155HG and PTBP1 influenced the expression of relevant proteins in the Wnt/β-catenin pathway. Collectively, the study demonstrated that the knockdown of MIR155HG increased glioma sensitivity to TMZ by inhibiting Wnt/β-catenin pathway activation via potently downregulating PTBP1.

This is a preview of subscription content, log in to check access.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Data Availability

All data and materials were available on line. https://pan.baidu.com/s/1zDr9vCIywTgCprsUVw8vcA&shfl=sharepset

References

  1. Antonopoulos M, Vang SW, Dionysiou D, Graf N, Stamatakos G (2019) Immune phenotype correlates with survival in patients with GBM treated with standard temozolomide-based therapy and immunotherapy. Anticancer Res 39:2043–2051. https://doi.org/10.21873/anticanres.13315

    Article  Google Scholar 

  2. Bak DH et al (2016) Autophagy enhancement contributes to the synergistic effect of vitamin D in temozolomide-based glioblastoma chemotherapy. Exp Therap Med 11:2153–2162. https://doi.org/10.3892/etm.2016.3196

    CAS  Article  Google Scholar 

  3. Bi Y et al (2018) beta-catenin contributes to cordycepin-induced MGMT inhibition and reduction of temozolomide resistance in glioma cells by increasing intracellular reactive oxygen species. Cancer lett 435:66–79. https://doi.org/10.1016/j.canlet.2018.07.040

    CAS  Article  Google Scholar 

  4. Bigner DD et al (1981) Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol 40:201–229. https://doi.org/10.1097/00005072-198105000-00001

    CAS  Article  Google Scholar 

  5. Cai P et al (2018a) Aberrant expression of LncRNA-MIR31HG regulates cell migration and proliferation by affecting miR-31 and miR-31*. Hirschsprung's Dis J Cell Biochem 119:8195–8203. https://doi.org/10.1002/jcb.26830

    CAS  Article  Google Scholar 

  6. Cai T, Liu Y, Xiao J (2018b) Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA-101 in glioblastoma. Cancer Med 7:1404–1415. https://doi.org/10.1002/cam4.1384

    CAS  Article  PubMed Central  Google Scholar 

  7. Calabretta S et al (2016) Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 35:2031–2039. https://doi.org/10.1038/onc.2015.270

    CAS  Article  Google Scholar 

  8. Camelo-Piragua S, Kesari S (2016) Further understanding of the pathology of glioma: implications for the clinic. Exp Rev Neurother 16:1055–1065. https://doi.org/10.1080/14737175.2016.1194755

    CAS  Article  Google Scholar 

  9. Chen D, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017) The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas. Oncotarget 8:51164–51176. https://doi.org/10.18632/oncotarget.17737

    Article  PubMed Central  Google Scholar 

  10. Chen Q et al (2018) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/beta-catenin pathway by scaffolding EZH2. Clin Cancer Res: An Off J Am Assoc Cancer Res 24:684–695. https://doi.org/10.1158/1078-0432.Ccr-17-0605

    CAS  Article  Google Scholar 

  11. Chen Z, Wei X, Shen L, Zhu H, Zheng X (2019) 20(S)-ginsenoside-Rg3 reverses temozolomide resistance and restrains epithelial-mesenchymal transition progression in glioblastoma. Cancer Sci 110:389–400. https://doi.org/10.1111/cas.13881

    CAS  Article  Google Scholar 

  12. Chu CW et al (2019) Thioridazine enhances P62-mediated autophagy and apoptosis through Wnt/beta-catenin signaling pathway in glioma cells. Int J Mol Sci. https://doi.org/10.3390/ijms20030473

    Article  PubMed Central  Google Scholar 

  13. Cui J, Placzek WJ (2016) PTBP1 modulation of MCL1 expression regulates cellular apoptosis induced by antitubulin chemotherapeutics. Cell Death Different 23:1681–1690. https://doi.org/10.1038/cdd.2016.60

    CAS  Article  Google Scholar 

  14. Dey M, Ulasov IV, Lesniak MS (2010) Virotherapy against malignant glioma stem cells. Cancer Lett 289:1–10. https://doi.org/10.1016/j.canlet.2009.04.045

    CAS  Article  Google Scholar 

  15. Duan S, Li M, Wang Z, Wang L, Liu Y (2018) H19 induced by oxidative stress confers temozolomide resistance in human glioma cells via activating NF-kappaB signaling. OncoTarg Ther 11:6395–6404. https://doi.org/10.2147/ott.S173244

    CAS  Article  Google Scholar 

  16. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes Gene 532:1–12 doi:10.1016/j.gene.2012.12.009

  17. Gao YF et al (2016) A critical overview of long non-coding RNA in glioma etiology 2016: an update. Tum Biol: J Int Soc Oncodev Biol Med 37:14403–14413. https://doi.org/10.1007/s13277-016-5307-4

    CAS  Article  Google Scholar 

  18. Ghetti A, Pinol-Roma S, Michael WM, Morandi C, Dreyfuss G (1992) hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671–3678. https://doi.org/10.1093/nar/20.14.3671

    CAS  Article  PubMed Central  Google Scholar 

  19. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423. https://doi.org/10.1093/jnci/51.5.1417

    CAS  Article  Google Scholar 

  20. Gil A, Sharp PA, Jamison SF, Garcia-Blanco MA (1991) Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev 5:1224–1236. https://doi.org/10.1101/gad.5.7.1224

    CAS  Article  Google Scholar 

  21. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911. https://doi.org/10.1212/wnl.30.9.907

    CAS  Article  Google Scholar 

  22. Hombach-Klonisch S et al (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Therap 184:13–41. https://doi.org/10.1016/j.pharmthera.2017.10.017

    CAS  Article  Google Scholar 

  23. Huang BS, Luo QZ, Han Y, Huang D, Tang QP, Wu LX (2017) MiR-223/PAX6 Axis Regulates Glioblastoma Stem Cell Proliferation and the Chemo Resistance to TMZ via Regulating PI3K/Akt Pathway. J Cell Biochem 118:3452–3461. https://doi.org/10.1002/jcb.26003

    CAS  Article  Google Scholar 

  24. Huang M et al (2016) c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest 126:1801–1814. https://doi.org/10.1172/jci84876

    Article  PubMed Central  Google Scholar 

  25. Huang T et al (2019) MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy 15:1100–1111. https://doi.org/10.1080/15548627.2019.1569947

    CAS  Article  PubMed Central  Google Scholar 

  26. Jia L, Tian Y, Chen Y, Zhang G (2018) The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/beta-Catenin pathway. OncoTarg Ther 11:313–321. https://doi.org/10.2147/ott.S154339

    Article  Google Scholar 

  27. Khasraw M, Lassman AB (2010) Advances in the treatment of malignant gliomas. Curr Oncol Rep 12:26–33. https://doi.org/10.1007/s11912-009-0077-4

    CAS  Article  Google Scholar 

  28. Li H et al (2017) Long non-coding RNA MALAT1 decreases the sensitivity of resistant glioblastoma cell lines to temozolomide cellular physiology and biochemistry. Int J Exp Cell Physiol, Biochem, Pharmacol 42:1192–1201. https://doi.org/10.1159/000478917

    CAS  Article  Google Scholar 

  29. Li S, Zeng A, Hu Q, Yan W, Liu Y, You Y (2017) miR-423–5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas. Neuro-Oncol 19:55–65. https://doi.org/10.1093/neuonc/now129

    CAS  Article  Google Scholar 

  30. Liao Y et al (2017) LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J Cell Biochem 118:1889–1899. https://doi.org/10.1002/jcb.25910

    CAS  Article  Google Scholar 

  31. Liu Q et al (2015) miR-155 regulates glioma cells invasion and chemosensitivity by p38 Isforms In Vitro. J Cell Biochem 116:1213–1221. https://doi.org/10.1002/jcb.25073

    CAS  Article  Google Scholar 

  32. Long X et al (2019) Long non-coding RNA GAS5 inhibits DDP-resistance and tumor progression of epithelial ovarian cancer via GAS5-E2F4-PARP1-MAPK axis. J Exp Clin Cancer Res: CR 38:345. https://doi.org/10.1186/s13046-019-1329-2

    CAS  Article  Google Scholar 

  33. Lu Y et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/beta-catenin signaling. Nat Med 23:1331–1341. https://doi.org/10.1038/nm.4424

    CAS  Article  PubMed Central  Google Scholar 

  34. Luo W, Yan D, Song Z, Zhu X, Liu X, Li X, Zhao S (2019) miR-126–3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/beta-catenin signaling via targeting SOX2. Life Sci 226:98–106. https://doi.org/10.1016/j.lfs.2019.04.023

    CAS  Article  Google Scholar 

  35. Mazor G et al (2019) The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis 10:246. https://doi.org/10.1038/s41419-019-1477-5

    CAS  Article  PubMed Central  Google Scholar 

  36. Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 20:899–905. https://doi.org/10.1016/j.drudis.2015.02.011

    CAS  Article  Google Scholar 

  37. Naumann SC et al (2009) Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53. Br J Cancer 100:322–333. https://doi.org/10.1038/sj.bjc.6604856

    CAS  Article  PubMed Central  Google Scholar 

  38. Ohba S, Hirose Y (2016) Current and future drug treatments for glioblastomas. Curr Med Chem 23:4309–4316. https://doi.org/10.2174/0929867323666161014132907

    CAS  Article  Google Scholar 

  39. Shang C, Tang W, Pan C, Hu X, Hong Y (2018) Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother Pharmacol 81:671–678. https://doi.org/10.1007/s00280-018-3522-y

    CAS  Article  Google Scholar 

  40. Siebzehnrubl FA et al (2013) The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance EMBO. Mol Med 5:1196–1212. https://doi.org/10.1002/emmm.201302827

    CAS  Article  Google Scholar 

  41. Sun Q et al (2018) MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res 46:10405–10416. https://doi.org/10.1093/nar/gky696

    CAS  Article  PubMed Central  Google Scholar 

  42. Tam W (2001) Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274:157–167. https://doi.org/10.1016/s0378-1119(01)00612-6

    CAS  Article  Google Scholar 

  43. Tan Z et al (2018) TRIM14 promotes chemoresistance in gliomas by activating Wnt/beta-catenin signaling via stabilizing Dvl2. Oncogene 37:5403–5415. https://doi.org/10.1038/s41388-018-0344-7

    CAS  Article  Google Scholar 

  44. Tell S, Yi H, Jockovich ME, Murray TG, Hackam AS (2006) The Wnt signaling pathway has tumor suppressor properties in retinoblastoma. Biochem Biophys Res Commun 349:261–269. https://doi.org/10.1016/j.bbrc.2006.08.044

    CAS  Article  Google Scholar 

  45. Wang R et al (2018) LncRNA MIR31HG targets HIF1A and P21 to facilitate head and neck cancer cell proliferation and tumorigenesis by promoting cell-cycle progression. Mol Cancer 17:162. https://doi.org/10.1186/s12943-018-0916-8

    CAS  Article  PubMed Central  Google Scholar 

  46. Wu P et al (2019a) Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun 10:2045. https://doi.org/10.1038/s41467-019-10025-2

    CAS  Article  PubMed Central  Google Scholar 

  47. Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y (2019b) The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res: CR 38:133. https://doi.org/10.1186/s13046-019-1132-0

    Article  Google Scholar 

  48. Wu X et al (2017) Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro-Oncol 19:1195–1205. https://doi.org/10.1093/neuonc/nox017

    CAS  Article  PubMed Central  Google Scholar 

  49. Xu N et al (2018) Long noncoding RNA AC003092.1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma. Cell Death Dis 9:1139. https://doi.org/10.1038/s41419-018-1183-8

    CAS  Article  PubMed Central  Google Scholar 

  50. Xu R et al (2017) PDGFA/PDGFRalpha-regulated GOLM1 promotes human glioma progression through activation of AKT. J Exp Clin Cancer Res: CR 36:193. https://doi.org/10.1186/s13046-017-0665-3

    CAS  Article  Google Scholar 

  51. Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z (2016) Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp clinical cancer research : CR 35:23. https://doi.org/10.1186/s13046-016-0303-5

    CAS  Article  Google Scholar 

  52. Yuan H, Qin Y, Zeng B, Feng Y, Li Y, Xiang T, Ren G (2019) Long noncoding RNA LINC01089 predicts clinical prognosis and inhibits cell proliferation and invasion through the Wnt/beta-catenin signaling pathway in breast cancer. OncoTarg Ther 12:4883–4895. https://doi.org/10.2147/ott.S208830

    CAS  Article  Google Scholar 

  53. Zeng H, Yang Z, Xu N, Liu B, Fu Z, Lian C, Guo H (2017) Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-beta1-dependent activation of Smad/ERK signaling. Cell Death Dis 8:e2885. https://doi.org/10.1038/cddis.2017.248

    CAS  Article  PubMed Central  Google Scholar 

  54. Zhang J et al (2018) LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/beta-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res: CR 37:225. https://doi.org/10.1186/s13046-018-0864-6

    CAS  Article  Google Scholar 

  55. Zhao D et al (2017a) MiR-154 functions as a tumor suppressor in glioblastoma by targeting Wnt5a. Mol Neurobiol 54:2823–2830. https://doi.org/10.1007/s12035-016-9867-5

    CAS  Article  Google Scholar 

  56. Zhao X et al (2017b) GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop Biochimica et biophysica acta. Mol Cell Res 1864:1605–1617. https://doi.org/10.1016/j.bbamcr.2017.06.020

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China, Grant/Award Number: #81502161, Chongqing Science and Technology Commission, Grant/Award Numbers: #cstc2015jcyjA10007.

Author information

Affiliations

Authors

Contributions

In our research, XH finished the most part of experiments and wrote the manuscript. JS and WY helped finish some part of experiments. KW and SZ gave advice for experimental design, QL designed the experiments and modified the manuscript.

Corresponding author

Correspondence to Qian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Animal experiments was approved by the Ethics Committee of Chongqing Medical University.

Informed Consent

All authors consent to publish the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, X., Sheng, J., Yu, W. et al. LncRNA MIR155HG Promotes Temozolomide Resistance by Activating the Wnt/β-Catenin Pathway Via Binding to PTBP1 in Glioma. Cell Mol Neurobiol (2020). https://doi.org/10.1007/s10571-020-00898-z

Download citation

Keywords

  • MIR155HG
  • Glioma
  • Drug resistance
  • PTBP1
  • Wnt/β-catenin