Skip to main content

Advertisement

Log in

An Immune-Related lncRNA Signature to Predict Survival In Glioma Patients

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioma is the most common and fatal primary brain tumor in human. Long non-coding RNA (lncRNA), which are characterized by regulation of gene expression and chromatin recombination play an important role in glioma, and immunotherapy is a promising cancer treatment. Therefore, it is necessary to identify Immune-related lncRNAs in glioma. In this study,we collected and evaluated the RNA-seq data of The Cancer Genome Atlas (TCGA, https://www.ncbi.nlm.nih.gov/) and Chinese Glioma Genome Atlas (CGGA, https://www.cgga.org.cn/) glioma patients and immune-related lncRNAs were screened. Cox regression and LASSO analysis were performed to construct a risk score formula to explor the different overall survival between high- and low-risk groups in TCGA and verified with CGGA. Gene ontology (GO) and pathway-enrichment analysis (KEGG) were performed to identify the function of screened genes. Co-expression network were performed of these genes for further analysis. Eleven immune-related lncRNAs were concerned to be involved in survival and adopted to construct the risk score formula. Patients with high-risk score held poor survival both in TCGA and CGGA. Compared with current clinical data, the Area Under Curve (AUC) of different years and Principal components analysis (PCA) suggested that the formula had better predictive power. Functional Annotation of immune-related lncRNAs showed that the differences overall survival of high and low RS group might be caused by the cell differentiation, microtubule polymerization, etc. We successfully constructed an immune-related lncRNAs formula with powerful predictive function, which provides certain guidance value to the analysis of glioma pathogenesis and clinical treatment, and potential therapeutic targets for glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barsyte-Lovejoy D, Lau SK et al (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66(10):5330–5337

    Article  CAS  Google Scholar 

  • Bhan A, Soleimani M et al (2017) Long noncoding RNA and Cancer: a new paradigm. Cancer Res 77(15):3965–3981

    Article  CAS  Google Scholar 

  • Brandes AA, Tosoni A et al (2008) Glioblastoma in adults. Crit Rev Oncol Hematol 67(2):139–152

    Article  Google Scholar 

  • Cheng Z, Li Z et al (2017) Long Non-coding RNA XIST promotes glioma tumorigenicity and angiogenesis by acting as a molecular sponge of miR-429. J Cancer 8(19):4106–4116

    Article  Google Scholar 

  • Chernova OB, Hunyadi A et al (2001) A novel member of the WD-repeat gene family, WDR11, maps to the 10q26 region and is disrupted by a chromosome translocation in human glioblastoma cells. Oncogene 20(38):5378–5392

    Article  CAS  Google Scholar 

  • Davis ME (2018) Epidemiology and overview of gliomas. Semin Oncol Nurs 34(5):420–429

    Article  Google Scholar 

  • Fischer GM, Vashisht GY et al (2018) Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31(1):11–30

    Article  Google Scholar 

  • Giavina-Bianchi MH, Giavina-Bianchi PJ et al (2017) Melanoma: tumor microenvironment and new treatments. An Bras Dermatol 92(2):156–166

    Article  Google Scholar 

  • Gong X, Huang M (2017) Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/beta-catenin signal pathway. Cancer Gene Ther 24(9):381–385

    Article  CAS  Google Scholar 

  • Gousias K, Markou M et al (2009) Descriptive epidemiology of cerebral gliomas in northwest Greece and study of potential predisposing factors, 2005–2007. Neuroepidemiology 33(2):89–95

    Article  CAS  Google Scholar 

  • Kiang KM, Zhang XQ et al (2017) CRNDE expression positively correlates with EGFR activation and modulates glioma cell growth. Target Oncol 12(3):353–363

    Article  Google Scholar 

  • Larjavaara S, Mantyla R et al (2007) Incidence of gliomas by anatomic location. Neuro Oncol 9(3):319–325

    Article  Google Scholar 

  • Long GV, Atkinson V et al (2018) Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol 19(5):672–681

    Article  CAS  Google Scholar 

  • Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167–179

    Article  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–29

    Article  CAS  Google Scholar 

  • McGranahan T, Therkelsen KE et al (2019) Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat Options Oncol 20(3):24

    Article  Google Scholar 

  • Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108

    Article  Google Scholar 

  • Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850

    Article  CAS  Google Scholar 

  • Ostrom QT, Bauchet L et al (2014) The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol 16(7):896–913

    Article  CAS  Google Scholar 

  • Shi Y, Wang Y et al (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS ONE 9(1):e86295

    Article  Google Scholar 

  • Wan MT, Ming ME (2018) Nivolumab versus ipilimumab in the treatment of advanced melanoma: a critical appraisal: ORIGINAL ARTICLE: Wolchok JD, Chiarion-Sileni V, Gonzalez R et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017; 377:1345-56. Br J Dermatol 179(2):296–300

    CAS  PubMed  Google Scholar 

  • Wirsching HG, Galanis E et al (2016) Glioblastoma. Handb Clin Neurol 134:381–397

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Huang.

Ethics declarations

Conflict of interest

All authors have read and approved to submit it to your journal. There are no conflicts of interest of any authors in relation to the submission.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, P., Li, Q., Wu, G. et al. An Immune-Related lncRNA Signature to Predict Survival In Glioma Patients. Cell Mol Neurobiol 41, 365–375 (2021). https://doi.org/10.1007/s10571-020-00857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00857-8

Keywords

Navigation