Lanthanum Chloride Impairs Learning and Memory and Induces Dendritic Spine Abnormality by Down-Regulating Rac1/PAK Signaling Pathway in Hippocampus of Offspring Rats

Abstract

Lanthanum (La) is a natural rare earth element. It has neurotoxic effects which can impair learning and memory in humans. However, its mechanism of neurotoxicity is unclear. Learning and memory are coordinated by dendritic spines which form tiny protruding structures on the dendritic branches of neurons. This study investigated the effect of LaCl3 exposure to pregnant and lactating rats on the offspring rats’ learning and memory ability. In this study, rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, 0.5% LaCl3, respectively, and this was done from conception to the end of the location. The effects of LaCl3 on spatial learning and memory ability in offspring rats and in the development of dendritic spines in CA1 pyramidal cells were investigated. The results showed that LaCl3 impaired spatial learning and memory ability in offspring rats, and decreased dendritic spine density during development. In addition, LaCl3 can affect the expression of CaMKII, miRNA132, p250GAP, Tiam1, PARD3, and down-regulated the activation of Rac1 which led to a decrease in the expression of Rac1/PAK signaling pathway and downstream regulatory proteins Cortactin and actin-related protein 2/3 complex (Arp2/3 complex). This study indicated that the learning and memory impairment and the decrease of dendritic spine density in the offspring of LaCl3 exposure may be related to the down-regulation of the Rac1/PAK signaling pathway regulated by Tiam1 and p250GAP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Allison JE, Boutin C, Carpenter D, Ellis DM, Parsons JL (2015) Cerium chloride heptahydrate (CeCl3. 7H2O) induces muscle paralysis in the generalist herbivore, Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae), fed contaminated plant tissues. Chemosphere 120:674–679. https://doi.org/10.1016/j.chemosphere.2014.09.058

    CAS  Article  PubMed  Google Scholar 

  2. Beltran-Campos V, Prado-Alcala RA, Leon-Jacinto U, Aguilar-Vazquez A, Quirarte GL, Ramirez-Amaya V, Diaz-Cintra S (2011) Increase of mushroom spine density in CA1 apical dendrites produced by water maze training is prevented by ovariectomy. Brain Res 1369:119–130. https://doi.org/10.1016/j.brainres.2010.10.105

    CAS  Article  PubMed  Google Scholar 

  3. Berry KP, Nedivi E (2017) Spine dynamics: are they all the same? Neuron 96:43–55. https://doi.org/10.1016/j.neuron.2017.08.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bian WJ, Miao WY, He SJ, Qiu Z, Yu X (2015) Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell 162:808–822. https://doi.org/10.1016/j.cell.2015.07.018

    CAS  Article  PubMed  Google Scholar 

  5. Burrell BD, Li Q (2008) Co-induction of long-term potentiation and long-term depression at a central synapse in the leech. Neurobiol Learn Mem 90:275–279. https://doi.org/10.1016/j.nlm.2007.11.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML (2010) Receptor tyrosine phosphatase sigma (RPTPsigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell Signal 22:1626–1633. https://doi.org/10.1016/j.cellsig.2010.06.001

    CAS  Article  PubMed  Google Scholar 

  7. Chen Z-y, Zhu X-d (2008) Accumulation of rare earth elements in bone and its toxicity and potential hazard to health. J Ecol Rural Environ 24:88–91

    Google Scholar 

  8. Chen LY, Rex CS, Babayan AH, Kramar EA, Lynch G, Gall CM, Lauterborn JC (2010) Physiological activation of synaptic Rac > PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci 30:10977–10984. https://doi.org/10.1523/jneurosci.1077-10.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen F et al (2015) Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent. Phys Chem Chem Phys 17:1189–1196. https://doi.org/10.1039/c4cp04380d

    CAS  Article  PubMed  Google Scholar 

  10. Consani S, Balic-Zunic T, Cardinale AM, Sgroi W, Giuli G (2018) A novel synthesis routine for woodwardite and its affinity towards light (La, Ce, Nd) and heavy (Gd and Y). Rare Earth Elem 11:150. https://doi.org/10.3390/ma11010130

    CAS  Article  Google Scholar 

  11. d’Aquino L et al (2009) Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol Biochem 41:2406–2413. https://doi.org/10.1016/j.soilbio.2009.08.012

    CAS  Article  Google Scholar 

  12. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  Google Scholar 

  13. Duman JG, Tzeng CP, Tu YK, Munjal T, Schwechter B, Ho TS, Tolias KF (2013) The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 33:6964–6978. https://doi.org/10.1523/jneurosci.3978-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Dumitriu D, Hao J, Hara Y et al (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30(22):7507–7515. https://doi.org/10.1523/jneurosci.6410-09.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Eisenhour D, Reisch F (2006) Industrial minerals and rocks: commodities, markets, and uses. Society for Mining, Metallurgy, and Exploration, Colorado

    Google Scholar 

  16. Fan G, Yuan Z, Zheng H, Liu Z (2004) Study on the effects of exposure to rare earth elements and health-responses in children aged 7-10 years. J Hygiene Res 33:23–28

    Google Scholar 

  17. Feng L et al (2006) Neurotoxicological consequence of long-term exposure to lanthanum. Toxicol Lett 165:112–120. https://doi.org/10.1016/j.toxlet.2006.02.003

    CAS  Article  Google Scholar 

  18. Gao X, Yang J, Li Y et al (2019) Lanthanum chloride induces autophagy in rat hippocampus through ROS-mediated JNK and AKT/mTOR signaling pathways. Metallomics 11(2):439–453. https://doi.org/10.1039/c8mt00295a

    CAS  Article  PubMed  Google Scholar 

  19. Greenhill SD, Juczewski K, de Haan AM, Seaton G, Fox K, Hardingham NR (2015) NEURODEVELOPMENT. Adult cortical plasticity depends on an early postnatal critical period. Science (New York, NY) 349:424–427. https://doi.org/10.1126/science.aaa8481

    CAS  Article  Google Scholar 

  20. Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci 26:7151–7155. https://doi.org/10.1523/jneurosci.1790-06.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci Total Environ 636:299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    CAS  Article  Google Scholar 

  22. Haditsch U et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419. https://doi.org/10.1016/j.mcn.2009.04.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. He X, Zhang Z, Zhang H, Zhao Y, Chai Z (2008) Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol Sci 103:354–361. https://doi.org/10.1093/toxsci/kfn046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hedrick NG, Harward SC, Hall CE, Murakoshi H, McNamara JO, Yasuda R (2016) Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 538:104–108. https://doi.org/10.1038/nature19784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Hu X et al (2018) Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors. Food Chem Toxicol 113:1–13. https://doi.org/10.1016/j.fct.2018.01.023

    CAS  Article  PubMed  Google Scholar 

  26. Impey S et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156. https://doi.org/10.1016/j.mcn.2009.10.005

    CAS  Article  PubMed  Google Scholar 

  27. Jiang M et al (2013) Dendritic arborization and spine dynamics are abnormal in the mouse model of MECP2 duplication syndrome. J Neurosci 33:19518–19533. https://doi.org/10.1523/jneurosci.1745-13.2013

    Article  PubMed  PubMed Central  Google Scholar 

  28. Joensuu M, Lanoue V, Hotulainen P (2018) Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 84:362–381. https://doi.org/10.1016/j.pnpbp.2017.08.023

    CAS  Article  PubMed  Google Scholar 

  29. Kim IH et al (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081–6092. https://doi.org/10.1523/jneurosci.0035-13.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kim IH et al (2015) Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 18:883–891. https://doi.org/10.1038/nn.4015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Li JG, Chu J, Pratico D (2018) Downregulation of autophagy by 12/15Lipoxygenase worsens the phenotype of an Alzheimer’s disease mouse model with plaques, tangles, and memory impairments. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0268-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu H, Yang J, Liu Q et al (2014) Lanthanum chloride impairs spatial memory through ERK/MSK1 signaling pathway of hippocampus in rats. Neurochem Res 39(12):2479–2491. https://doi.org/10.1007/s11064-014-1452-6

    CAS  Article  PubMed  Google Scholar 

  33. Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550. https://doi.org/10.1038/75714

    CAS  Article  PubMed  Google Scholar 

  34. Mertens AE, Pegtel DM, Collard JG (2006) Tiam1 takes PARt in cell polarity. Trends Cell Biol 16:308–316. https://doi.org/10.1016/j.tcb.2006.04.001

    CAS  Article  PubMed  Google Scholar 

  35. Mi Z, Si T, Kapadia K, Li Q, Muma NA (2017) Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. Neuropharmacology 117:93–105. https://doi.org/10.1016/j.neuropharm.2017.01.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Miao L, Ma Y, Xu R, Yan W (2011) Environmental biogeochemical characteristics of rare earth elements in soil and soil-grown plants of the Hetai goldfield, Guangdong Province, China. Environ Earth Sci 63:501–511. https://doi.org/10.1007/s12665-010-0718-9

    CAS  Article  Google Scholar 

  37. Mleczek P, Borowiak K, Budka A, Niedzielski P (2018) Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-2428-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nakazawa T, Kuriu T, Tezuka T, Umemori H, Okabe S, Yamamoto T (2008) Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTPase-activating protein, p250GAP. J Neurochem 105:1384–1393. https://doi.org/10.1111/j.1471-4159.2008.05335.x

    CAS  Article  PubMed  Google Scholar 

  39. Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M (2018) Levodopa treatment and dendritic spine pathology. Mov Disord 33:877–888. https://doi.org/10.1002/mds.27172

    CAS  Article  PubMed  Google Scholar 

  40. Okamoto K, Bosch M, Hayashi Y (2009) The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda, Md) 24:357–366. https://doi.org/10.1152/physiol.00029.2009

    CAS  Article  Google Scholar 

  41. Olias M, Ceron JC, Fernandez I, De la Rosa J (2005) Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain). Environ Pollut 135:53–64. https://doi.org/10.1016/j.envpol.2004.10.014

    CAS  Article  PubMed  Google Scholar 

  42. Ota Y, Zanetti AT, Hallock RM (2013) The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast 2013:185463. https://doi.org/10.1155/2013/185463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Penzes P, Rafalovich I (2012) Regulation of the actin cytoskeleton in dendritic spines. Adv Exp Med Biol 970:81–95. https://doi.org/10.1007/978-3-7091-0932-8_4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Penzes P, Cahill ME, Jones KA, Srivastava DP (2008) Convergent CaMK and RacGEF signals control dendritic structure and function. Trends Cell Biol 18:405–413. https://doi.org/10.1016/j.tcb.2008.07.002

    CAS  Article  PubMed  Google Scholar 

  45. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. https://doi.org/10.1038/nn.2741

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Pyronneau A, He Q, Hwang JY (2017) Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 10:eaan0852. https://doi.org/10.1126/scisignal.aan0852

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582. https://doi.org/10.1016/j.envint.2006.05.007

    CAS  Article  PubMed  Google Scholar 

  48. Redies C, Hertel N, Hubner CA (2012) Cadherins and neuropsychiatric disorders. Brain Res 1470:130–144. https://doi.org/10.1016/j.brainres.2012.06.020

    CAS  Article  PubMed  Google Scholar 

  49. Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94:141–188. https://doi.org/10.1152/physrev.00012.2013

    CAS  Article  PubMed  Google Scholar 

  50. Spence EF, Kanak DJ (2016) The Arp2/3 complex is essential for distinct stages of spine synapse maturation including synapse unsilencing. J Neurosci 36:9696–9709. https://doi.org/10.1523/jneurosci.0876-16.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Spires TL et al (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287. https://doi.org/10.1523/jneurosci.1879-05.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Sun Y et al (2018) Lanthanum chloride reduces lactate production in primary culture rat cortical astrocytes and suppresses primary co-culture rat cortical astrocyte-neuron lactate transport. Arch Toxicol 92:1407–1419. https://doi.org/10.1007/s00204-017-2148-x

    CAS  Article  PubMed  Google Scholar 

  53. Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME (2007) The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 104:7265–7270. https://doi.org/10.1073/pnas.0702044104

    CAS  Article  PubMed  Google Scholar 

  54. Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183. https://doi.org/10.1038/nn1335

    CAS  Article  Google Scholar 

  55. Uruno T et al (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3:259–266. https://doi.org/10.1038/35060051

    CAS  Article  PubMed  Google Scholar 

  56. Wang L, Liang T, Kleinman PJ, Cao H (2011) An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources. Chemosphere 85:1075–1079. https://doi.org/10.1016/j.chemosphere.2011.07.038

    CAS  Article  PubMed  Google Scholar 

  57. Wang B, Wu Q, Lei L et al (2019) Long-term social isolation inhibits autophagy activation, induces postsynaptic dysfunctions and impairs spatial memory. Exp Neurol 311:213–224. https://doi.org/10.1016/j.expneurol.2018.09.009

    Article  PubMed  Google Scholar 

  58. Wayman GA et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105:9093–9098. https://doi.org/10.1073/pnas.0803072105

    Article  PubMed  Google Scholar 

  59. Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT (2000) Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151:29–40

    CAS  Article  Google Scholar 

  60. Wegner AM, Nebhan CA, Hu L, Majumdar D, Meier KM, Weaver AM, Webb DJ (2008) N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J Biol Chem 283:15912–15920. https://doi.org/10.1074/jbc.m801555200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Wen B, Liu Y, Hu XY, Shan XQ (2006) Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils. Chemosphere 63:1179–1186. https://doi.org/10.1016/j.chemosphere.2005.09.002

    CAS  Article  PubMed  Google Scholar 

  62. Wu J, Yang J, Liu Q, Wu S, Ma H, Cai Y (2013) Lanthanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca(2)(+) and Bcl-2 family. Biol Trace Elem Res 152(1):125–134. https://doi.org/10.1007/s12011-013-9601-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Xie Z et al (2007) Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56:640–656. https://doi.org/10.1016/j.neuron.2007.10.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Yang J et al (2009) Lanthanum chloride impairs memory, decreases pCaMK IV, pMAPK and pCREB expression of hippocampus in rats. Toxicol Lett 190:208–214. https://doi.org/10.1016/j.toxlet.2009.07.016

    CAS  Article  PubMed  Google Scholar 

  65. Yang J, Liu Q, Wu S, Xi Q, Cai Y (2013) Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus. Biometals 26(1):43–59. https://doi.org/10.1007/s10534-012-9593-z

    CAS  Article  PubMed  Google Scholar 

  66. Yasuda R (2017) Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity. Biophys J 113:2152–2159. https://doi.org/10.1016/j.bpj.2017.07.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25:9989–9999. https://doi.org/10.1523/jneurosci.2492-05.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 25:3379–3388. https://doi.org/10.1523/jneurosci.3553-04.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang L et al (2017a) The effect of nuclear factor erythroid 2-related factor/antioxidant response element signalling pathway in the lanthanum chloride-induced impairment of learning and memory in rats. J Neurochem 140:463–475. https://doi.org/10.1111/jnc.13895

    CAS  Article  PubMed  Google Scholar 

  70. Zhang L et al (2017b) Activation of Nrf2/ARE signaling pathway attenuates lanthanum chloride induced injuries in primary rat astrocytes. Metallomics 9:1120–1131. https://doi.org/10.1039/c7mt00182g

    CAS  Article  PubMed  Google Scholar 

  71. Zhao YG, Sun L, Miao G et al (2015) The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy 11(6):881–890. https://doi.org/10.1080/15548627.2015.1047127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Zhao ZH, Zheng G, Wang T et al (2018) Low-level gestational lead exposure alters dendritic spine plasticity in the hippocampus and reduces learning and memory in rats. Sci Rep 8(1):3533. https://doi.org/10.1038/s41598-018-21521-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Zheng L et al (2013) Lanthanum chloride impairs spatial learning and memory and downregulates NF-kappa B signalling pathway in rats. Arch Toxicol 87:2105–2117. https://doi.org/10.1007/s00204-013-1076-7

    CAS  Article  PubMed  Google Scholar 

  74. Zhu W, Xu S, Shao P, Zhang H, Wu D, Yang W, Feng J (1997) Bioelectrical activity of the central nervous system among populations in a rare earth element area. Biol Trace Elem Res 57:71–77. https://doi.org/10.1007/bf02803871

    CAS  Article  PubMed  Google Scholar 

  75. Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a009886

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81773469, 81373024, and 81673220).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jinghua Yang or Yuan Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Yang, J., Hong, Y. et al. Lanthanum Chloride Impairs Learning and Memory and Induces Dendritic Spine Abnormality by Down-Regulating Rac1/PAK Signaling Pathway in Hippocampus of Offspring Rats. Cell Mol Neurobiol 40, 459–475 (2020). https://doi.org/10.1007/s10571-019-00748-7

Download citation

Keywords

  • Lanthanum
  • Hippocampus
  • Learning and memory
  • Rac1
  • Dendritic spine