The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer’s Disease

Abstract

Alzheimer’s disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aenlle KK, Kumar A, Cui L, Jackson TC, Foster TC (2007) Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiol Aging 30(6):932–945. https://doi.org/10.1016/j.neurobiolaging.2007.09.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Almey A, Milner TA, Brake WG (2015) Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 74:125–138. https://doi.org/10.1016/j.yhbeh.2015.06.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457. https://doi.org/10.1002/cne.901370404

    CAS  Article  PubMed  Google Scholar 

  4. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    CAS  Article  Google Scholar 

  5. Amakiri N, Kubosumi A, Tran J, Reddy PH (2019) Amyloid beta and microRNAs in Alzheimer’s disease. Front Neurosci 13:430. https://doi.org/10.3389/fnins.2019.00430

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anastasio TJ (2013) Exploring the contribution of estrogen to amyloid-Beta regulation: a novel multifactorial computational modeling approach. Front Pharmacol 4:16. https://doi.org/10.3389/fphar.2013.00016

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A, Yoon SY, Zwilling D, Yan TX, Chen L, Huang Y (2010) Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 30:13707–13717. https://doi.org/10.1523/JNEUROSCI.4040-10.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Azcoitia I, Yague J, Garcia-Segura LM (2011) Estradiol synthesis within the human brain. Neuroscience 191:139–147. https://doi.org/10.1016/j.neuroscience.2011.02.012

    CAS  Article  PubMed  Google Scholar 

  9. Banasr M, Hery M, Brezun JM, Daszuta A (2001) Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci 14:1417–1424. https://doi.org/10.1046/j.0953-816x.2001.01763.x

    CAS  Article  PubMed  Google Scholar 

  10. Barnea A, Roberts J (2001) Induction of functional and morphological expression of neuropeptide Y (NPY) in cortical cultures by brain-derived neurotrophic factor (BDNF): evidence for a requirement for extracellular-regulated kinase (ERK)-dependent and ERK-independent mechanisms. Brain Res 919:57–69. https://doi.org/10.1016/S0006-8993(01)02999-7

    CAS  Article  PubMed  Google Scholar 

  11. Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci 4:976–997

    Google Scholar 

  12. Behl C, Skutella T, Frank LH, Post A, Widmann M, Newton CJ, Holsboer F (1997) Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 51:535–541. https://doi.org/10.1124/mol.51.4.535

    CAS  Article  PubMed  Google Scholar 

  13. Bhattacherjee A, Liao Z, Smith PG (2014) Trophic factor and hormonal regulation of neurite outgrowth in sensory neuron-like 50B11 cells. Neurosci Lett 558:120–125. https://doi.org/10.1016/j.neulet.2013.11.018

    CAS  Article  PubMed  Google Scholar 

  14. Bi R, Broutman G, Foy MR, Thompson RF, Baudry M (2000) The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus. Proc Natl Acad Sci USA 97:3602–3607. https://doi.org/10.1073/pnas.060034497

    CAS  Article  PubMed  Google Scholar 

  15. Bi R, Foy MR, Vouimba RM, Thompson RF, Baudry M (2001) Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc Natl Acad Sci USA 98(23):13391–13395. https://doi.org/10.1073/pnas.241507698

    CAS  Article  PubMed  Google Scholar 

  16. Bi R, Foy MR, Thompson RF, Baudry M (2003) Effects of estrogen, age, and calpain on MAP kinase and NMDA receptors in female rat brain. Neurobiol Aging 24(7):977–983. https://doi.org/10.1016/S0197-4580(03)00012-5

    CAS  Article  PubMed  Google Scholar 

  17. Blaustein JD (1992) Cytoplasmic estrogen receptors in rat brain: immunocytochemical evidence using three antibodies with distinct epitopes. Endocrinology 131:1336–1342. https://doi.org/10.1210/endo.131.3.1380440

    CAS  Article  PubMed  Google Scholar 

  18. Bless EP, Yang J, Acharya KD, Nettles SA, Vassoler FM, Byrnes EM, Tetel MJ (2016) Adult neurogenesis in the female mouse hypothalamus: estradiol and high-fat diet alter the generation of newborn neurons expressing estrogen receptor alpha. eNeuro. https://doi.org/10.1523/ENEURO.0027-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blurton-Jones M, Kuan P, Tuszynski M (2004) Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression. J Comp Neurol 468:347–360. https://doi.org/10.1002/cne.10989

    CAS  Article  PubMed  Google Scholar 

  20. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(4):589–599. https://doi.org/10.1016/j.stem.2018.03.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Brinton RD, Chen S, Montoya M, Hsieh D, Minaya J (2000) The estrogen replacement therapy of the Women’s Health Initiative promotes the cellular mechanisms of memory and neuronal survival in neurons vulnerable to Alzheimer’s disease. Maturitas 34:S35–S52. https://doi.org/10.1016/S0378-5122(00)00107-9

    CAS  Article  PubMed  Google Scholar 

  22. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29(2):313–339. https://doi.org/10.1016/j.yfrne.2008.02.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Briz V, Baudry M (2014) Estrogen regulates protein synthesis and actin polymerization in hippocampal neurons through different molecular mechanisms. Front Endocrinol 5:22. https://doi.org/10.3389/fendo.2014.00022

    Article  Google Scholar 

  24. Callahan MJ, Lipinski WJ, Bian F, Durham RA, Pack A, Walker LC (2001) Augmented senile plaque load in aged female β-amyloid precursor protein-transgenic mice. Am J Pathol 158:1173–1177. https://doi.org/10.1016/S0002-9440(10)64064-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Cameron HA, Glover LR (2015) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66:53–81. https://doi.org/10.1146/annurev-psych-010814-015006

    Article  PubMed  Google Scholar 

  26. Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, Baxter LC, Rapcsak SZ, Shi J, Woodruff BK, Locke DE, Snyder CH, Alexander GE, Rademakers R, Reiman EM (2009) Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 361:255–263. https://doi.org/10.1056/NEJMoa0809437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK (2019) Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 25(2):224–242. https://doi.org/10.1093/humupd/dmy047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Nilsen J, Brinton RD (2006) Dose and temporal pattern of estrogen exposure determines neuroprotective outcome in hippocampal neurons: therapeutic implications. Endocrinology 147:5303–5313. https://doi.org/10.1210/en.2006-0495

    CAS  Article  PubMed  Google Scholar 

  29. Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang YP (2007) Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis 29:316–326. https://doi.org/10.1016/j.nbd.2007.09.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Durakoglugil MS, Xian X, Herz J (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci USA 107:12011–12016. https://doi.org/10.1073/pnas.0914984107

    Article  PubMed  Google Scholar 

  31. Chhibber A, Woody SK, Rumi MK, Soares MJ, Zhao L (2017) Estrogen receptor β deficiency impairs BDNF–5-HT2A signaling in the hippocampus of female brain: a possible mechanism for menopausal depression. Psychoneuroendocrinology 82:107–116. https://doi.org/10.1016/j.psyneuen.2017.05.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Correia SC, Santos RX, Cardoso S, Carvalho CS, Santos MR, Oliveira CI, Moreira P (2010) Effects of estrogen in the brain: is it a neuroprotective agent in Alzheimer’s disease? Curr Aging Sci 3:113–126. https://doi.org/10.2174/1874609811003020113

    Article  PubMed  Google Scholar 

  33. Craig MC, Murphy D (2010) Estrogen therapy and Alzheimer’s dementia. Ann N Y Acad Sci 1205:245–253. https://doi.org/10.1111/j.1749-6632.2010.05673.x

    Article  PubMed  Google Scholar 

  34. Craig MC, Fletcher PC, Daly EM, Rymer J, Brammer M, Giampietro V, Murphy DG (2008) Physiological variation in estradiol and brain function: a functional magnetic resonance imaging study of verbal memory across the follicular phase of the menstrual cycle. Horm Behav 53:503–508. https://doi.org/10.1016/j.yhbeh.2007.11.005

    CAS  Article  PubMed  Google Scholar 

  35. Crous-Bou M, Minguillon C, Gramunt N, Molinuevo JL (2017) Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Res Therapy 9:71–80. https://doi.org/10.1186/s13195-017-0297-z

    CAS  Article  Google Scholar 

  36. Dana P, Ghorbanian M (2018) Neurogenesis in the dentate gyrus of the hippocampus associated with sex hormone levels in female mice during different stages of the estrous cycle. J Cell Biol Histol 1:105–117. https://doi.org/10.15744/2638-082X.1.105

    Article  Google Scholar 

  37. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. https://doi.org/10.1038/nrn2822

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Denley MC, Gatford NJ, Sellers KJ, Srivastava DP (2018) Estradiol and the development of the cerebral cortex: an unexpected role? Front Neurosci 12:245–264. https://doi.org/10.3389/fnins.2018.00245

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dhandapani KM, Brann DW (2007) Role of astrocytes in estrogen-mediated neuroprotection. Exp Gerontol 42:70–75. https://doi.org/10.1016/j.exger.2006.06.032

    CAS  Article  PubMed  Google Scholar 

  40. Dias GP, Cocks G, do Nascimento Bevilaqua MC, Nardi AE, Thuret S (2016) Resveratrol: a potential hippocampal plasticity enhancer. Oxid Med Cell Longev 2016:9651236. https://doi.org/10.1155/2016/9651236

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 130:1–19. https://doi.org/10.1007/s00401-015-1449-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Du X, Hill RA (2016) The potential of gonadal hormone signalling pathways as therapeutics for dementia. J Mol Neurosci 60(3):336–348. https://doi.org/10.1007/s1203

    CAS  Article  PubMed  Google Scholar 

  43. Duarte A, Hrynchak M, Gonçalves I, Quintela T, Santos C (2016) Sex hormone decline and amyloid β synthesis, transport and clearance in the brain. J Neuroendocrinol. https://doi.org/10.1111/jne.12432

    Article  PubMed  Google Scholar 

  44. Duarte-Guterman P, Lieblich SE, Chow C, Galea LA (2015a) Estradiol and GPER activation differentially affect cell proliferation but not GPER expression in the hippocampus of adult female rats. PLoS ONE 10(6):e0129880. https://doi.org/10.1371/journal.pone.0129880

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Duarte-Guterman P, Yagi S, Chow C, Galea LA (2015b) Hippocampal learning, memory, and neurogenesis: effects of sex and estrogens across the lifespan in adults. Horm Behav 74:37–52. https://doi.org/10.1016/j.yhbeh.2015.05.024

    CAS  Article  PubMed  Google Scholar 

  46. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O’Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR Jr (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12:292–323. https://doi.org/10.1016/j.jalz.2016.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elsabagh S, Hartley DE, File SE (2007) Cognitive function in late versus early postmenopausal stage. Maturitas 56:84–93. https://doi.org/10.1016/j.maturitas.2006.06.007

    Article  PubMed  Google Scholar 

  48. El-Sayed NS, Bayan Y (2015) Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease. Adv Exp Med Biol 822:107–118. https://doi.org/10.1007/978-3-319-08927-0_12

    CAS  Article  PubMed  Google Scholar 

  49. Fahnestock M, Garzon D, Holsinger RM, Michalski B (2002) Neurotrophic factors and Alzheimer’s disease: are we focusing on the wrong molecule? J Neural Transm Suppl 1(62):241–252. https://doi.org/10.1007/978-3-7091-6139-5_22

    Article  Google Scholar 

  50. Fan L, Zhao Z, Orr PT, Chambers CH, Lewis MC, Frick KM (2010) Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J Neurosci 30:4390–4400. https://doi.org/10.1523/JNEUROSCI.4333-09.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Fester L, Prange-Kiel J, Zhou L, Blittersdorf BV, Bohm J, Jarry H, Schumacher M, Rune GM (2012) Estrogen-regulated synaptogenesis in the hippocampus: sexual dimorphism in vivo but not in vitro. J Steroid Biochem Mol Biol 131:24–29. https://doi.org/10.1016/j.jsbmb.2011.11.010

    CAS  Article  PubMed  Google Scholar 

  52. Franklin TB, Perrot-Sinal TS (2006) Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions. Psychoneuroendocrinology 31(1):38–48. https://doi.org/10.1016/j.psyneuen.2005.05.008

    CAS  Article  PubMed  Google Scholar 

  53. Frick KM (2015) Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav 74:4–18. https://doi.org/10.1016/j.yhbeh.2015.05.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Galea LA (2008) Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Rev 57:332–341. https://doi.org/10.1016/j.brainresrev.2007.05.008

    CAS  Article  PubMed  Google Scholar 

  55. Galea LA, Spritzer MD, Barker JM, Pawluski JL (2006) Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 16:225–232. https://doi.org/10.1002/hipo.20154

    CAS  Article  PubMed  Google Scholar 

  56. Galea LA, Wainwright SR, Roes M, Duarte-Guterman P, Chow C, Hamson D (2013) Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol 25:1039–1061. https://doi.org/10.1111/jne.12070

    CAS  Article  PubMed  Google Scholar 

  57. Gan L, Qiao S, Lan X, Chi L, Luo C, Lien L, Yan LQ, Liu R (2007) Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer’s disease-like transgenic (pPDGF-APPSw, Ind) mice. Neurobiol Dis 29(1):71–80. https://doi.org/10.1016/j.nbd.2007.08.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. George S, Petit GH, Gouras GK, Brundin P, Olsson R (2013) Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer’s disease. ACS Chem Neurosci 4:1537–1548. https://doi.org/10.1021/cn400133s

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Gibbs RB (1998) Levels of trkA and BDNF mRNA, but not NGF mRNA, fluctuate across the estrous cycle and increase in response to acute hormone replacement. Brain Res 787(2):259–268. https://doi.org/10.1016/S0006-8993(97)01511-4

    CAS  Article  PubMed  Google Scholar 

  60. Gibbs RB (1999) Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Res 844:20–27. https://doi.org/10.1016/S0006-8993(99)01880-6

    CAS  Article  PubMed  Google Scholar 

  61. Gould E, Woolley CS, Frankfurt M, McEwen BS (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10:1286–1291. https://doi.org/10.1523/JNEUROSCI.10-04-01286.1990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Green PS, Bishop J, Simpkins JW (1997) 17α-Estradiol exerts neuroprotective effects on SK-N-SH cells. J Neurosci 17(2):511–515. https://doi.org/10.1523/JNEUROSCI.17-02-00511.1997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Grimm A, Lim YA, Mensah-Nyagan AG, Gotz J, Eckert A (2012) Alzheimer’s disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 46:151–160. https://doi.org/10.1007/s12035-012-8281-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Guo JW, Guan PP, Ding WY, Wang SL, Huang XS, Wang ZY, Wang P (2017) Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer’s disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 145:106–127. https://doi.org/10.1016/j.biomaterials.2017.07.023

    CAS  Article  PubMed  Google Scholar 

  65. Han SM, Baig HS, Hammarlund M (2016) Mitochondria localize to injured axons to support regeneration. Neuron 92:1308–1323. https://doi.org/10.1016/j.neuron.2016.11.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Haraguchi S, Sasahara K, Shikimi H, Honda S, Harada N, Tsutsui K (2012) Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. Cerebellum 11:416–417. https://doi.org/10.1007/s12311-011-0342-6

    CAS  Article  PubMed  Google Scholar 

  67. Hazell GG, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202:223–236. https://doi.org/10.1677/JOE-09-0066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Heberden C (2017) Sex steroids and neurogenesis. Biochem Pharmacol 141:56–62. https://doi.org/10.1016/j.bcp.2017.05.019

    CAS  Article  PubMed  Google Scholar 

  69. Henderson VW, John JAS, Hodis HN, McCleary CA, Stanczyk FZ, Shoupe D, Kono N, Dustin L, Allayee H, Mack WJ (2016) Cognitive effects of estradiol after menopause A randomized trial of the timing hypothesis. Neurology 87:699–708. https://doi.org/10.1212/WNL.0000000000002980

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, Zahel J, Sanchez-Mendoza E, Wang Y, Hermann DM (2016) Kallikrein-8 inhibition attenuates Alzheimer’s disease pathology in mice. Alzheimers Dement 12:1273–1287. https://doi.org/10.1016/j.jalz.2016.05.006

    Article  PubMed  Google Scholar 

  71. Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua F, Tsukagoshi-Nagai H, Horikoshi-Sakuraba Y, Mughal M, Rebeck GW, LaFerla FM, Mattson MP, Iwata N, Saido TC, Klein WL, Duff KE, Aisen PS, Matsuoka Y (2008) Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res 1216:92–103. https://doi.org/10.1016/j.brainres.2008.03.079

    CAS  Article  PubMed  Google Scholar 

  72. Hoekstra JG, Hipp MJ, Montine TJ, Kennedy SR (2016) Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann Neurol 80:301–306. https://doi.org/10.1002/ana.24709

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto T, Kawato S (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017α and P450 aromatase localized in neurons. Proc Natl Acad Sci USA 101(3):865–870. https://doi.org/10.1073/pnas.2630225100

    CAS  Article  PubMed  Google Scholar 

  74. Hojo Y, Higo S, Kawato S, Hatanaka Y, Ooishi Y, Murakami G, Ishii H, Komatsuzaki Y, Ogiue-Ikeda M, Mukai H, Kimoto T (2011) Hippocampal synthesis of sex steroids and corticosteroids: essential for modulation of synaptic plasticity. Front Endocrinol 2:43. https://doi.org/10.3389/fendo.2011.00043

    Article  Google Scholar 

  75. Holder MK, Mong JA (2017) The role of ovarian hormones and the medial amygdala in sexual motivation. Curr Sex Health Rep 9(4):262–270

    Article  Google Scholar 

  76. Hollands C, Bartolotti N, Lazarov O (2016) Alzheimer’s disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front Neurosci 10:178. https://doi.org/10.3389/fnins.2016.00178

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hollands C, Tobin MK, Hsu M, Musaraca K, Yu TS, Mishra R, Kernie SG, Lazarov O (2017) Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Mol Neurodegener 12(1):64. https://doi.org/10.1186/s13024-017-0207-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Ignar-Trowbridge DM, Pimentel M, Teng CT, Korach KS, McLachlan JA (1995) Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ Health Perspect 7:35–38. https://doi.org/10.1289/ehp.95103s735

    Article  Google Scholar 

  79. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161. https://doi.org/10.1038/nn.2185

    CAS  Article  PubMed  Google Scholar 

  80. Inagaki T, Frankfurt M, Luine V (2012) Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: role of dendritic spines. Endocrinology 153:3357–3367. https://doi.org/10.1210/en.2012-1121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Iughetti L, Lucaccioni L, Fugetto F, Predieri B, Berardi A, Ferrari F (2018) Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides 72:23–29. https://doi.org/10.1016/j.npep.2018.09.005

    CAS  Article  PubMed  Google Scholar 

  82. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2003) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101(1):343–347. https://doi.org/10.1073/pnas.2634794100

    CAS  Article  PubMed  Google Scholar 

  83. Jin K, Xie L, Mao XO, Greenberg DA (2006) Alzheimer’s disease drugs promote neurogenesis. Brain Res 1085(1):183–188. https://doi.org/10.1016/j.brainres.2006.02.081

    CAS  Article  PubMed  Google Scholar 

  84. Kempermann G (2019) Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 20(4):235–245. https://doi.org/10.1038/s41583-019-0120-x

    CAS  Article  PubMed  Google Scholar 

  85. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812. https://doi.org/10.1101/cshperspect.a018812

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Keyvani K, Münster Y, Kurapati NK, Rubach S, Schonborn A, Kocakavuk E, Karout M, Hammesfahr P, Wang YC, Hermann DM, Teuber-Hanselmann S, Herring A (2018) Higher levels of kallikrein-8 in female brain may increase the risk for Alzheimer’s disease. Brain Pathol 28:947–964. https://doi.org/10.1111/bpa.12599

    CAS  Article  PubMed  Google Scholar 

  87. Khan MM, Wakade C, de Sevilla L, Brann DW (2014) Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J Steroid Biochem Mol Biol 146:38–47. https://doi.org/10.1016/j.jsbmb.2014.05.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Kight KE, McCarthy MM (2017) Sex differences and estrogen regulation of BDNF gene expression, but not propeptide content, in the developing hippocampus. J Neurosci Res 95(1–2):345–354. https://doi.org/10.1002/jnr.23920

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Kiss A, Delattre AM, Pereira SI, Carolino RG, Szawka RE, Anselmo-Franci JA, Zanata SM, Ferraz AC (2012) 17beta-estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas. Behav Brain Res 227(1):100–108. https://doi.org/10.1016/j.bbr.2011.10.047

    CAS  Article  PubMed  Google Scholar 

  90. Kodali M, Parihar VK, Hattiangady B, Mishra V, Shuai B, Shetty AK (2015) Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 5:8075. https://doi.org/10.1038/srep08075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Kong D, Yan Y, He XY, Yang H, Liang B, Wang J, He Y, Ding Y, Yu H (2019) Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease. Biomed Res Int 2019:8983752. https://doi.org/10.1155/2019/8983752

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24:5913–5921. https://doi.org/10.1523/JNEUROSCI.5186-03.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, Van Praag H (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33(12):569–579. https://doi.org/10.1016/j.tins.2010.09.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. LeBlanc ES, Janowsky J, Chan BK, Nelson HD (2001) Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA 285:1489–1499. https://doi.org/10.1001/jama.285.11.1489

    CAS  Article  PubMed  Google Scholar 

  95. Lewis MC, Kerr KM, Orr PT, Frick KM (2008) Estradiol-induced enhancement of object memory consolidation involves NMDA receptors and protein kinase A in the dorsal hippocampus of female C57BL/6 mice. Behav Neurosci 122:716–721. https://doi.org/10.1037/0735-7044.122.3.716

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Li R, Cui J, Shen Y (2014) Brain sex matters: estrogen in cognition and Alzheimer’s disease. Mol Cell Endocrinol 389:13–21. https://doi.org/10.1016/j.mce.2013.12.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Li KX, Sun Q, Wei LL, Du GH, Huang X, Wang JK (2019a) ERα gene promoter methylation in cognitive function and quality of life of patients with Alzheimer disease. J Geriatr Psychiatry Neurol 32(4):221–228. https://doi.org/10.1177/0891988719835325

    Article  PubMed  Google Scholar 

  98. Li W, Li H, Wei H, Lu Y, Lei S, Zheng J, Lu H, Chen X, Liu Y, Zhang P (2019b) 17β-Estradiol treatment attenuates neurogenesis damage and improves behavior performance after ketamine exposure in neonatal rats. Front Cell Neurosci 13:251. https://doi.org/10.3389/fncel.2019.00251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Lim YA, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, Ittner LM, Eckert A, Gotz J (2011) Inhibition of the mitochondrial enzyme ABAD restores the amyloid-β-mediated deregulation of estradiol. PLoS ONE 6:e28887. https://doi.org/10.1371/journal.pone.0028887

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest 120(1):29–40. https://doi.org/10.1172/JCI40543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118. https://doi.org/10.1038/nrneurol.2012.263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Lu Y, Sareddy GR, Wang J, Wang R, Li Y, Dong Y, Zhang Q, Liu J, O’Connor J, Xu J, Ratna KV, Brann D (2019) Neuron-derived estrogen regulates synaptic plasticity and memory. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1970-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  103. Luine V, Frankfurt M (2013) Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience 239:34–45. https://doi.org/10.1016/j.neuroscience.2012.10.019

    CAS  Article  PubMed  Google Scholar 

  104. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13(11):1338–1344. https://doi.org/10.1038/nn.2672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Mahmoud R, Wainwright SR, Galea LA (2016) Sex hormones and adult hippocampal neurogenesis: regulation, implications, and potential mechanisms. Front Neuroendocrinol 41:129–152. https://doi.org/10.1016/j.yfrne.2016.03.002

    CAS  Article  PubMed  Google Scholar 

  106. Malva J, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva A (2012) Multifaces of neuropeptide Y in the brain–neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 46:299–308. https://doi.org/10.1016/j.npep.2012.09.001

    CAS  Article  PubMed  Google Scholar 

  107. McClure RE, Barha CK, Galea LA (2013) 17β-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats. Horm Behav 63:144–157. https://doi.org/10.1016/j.yhbeh.2012.09.011

    CAS  Article  PubMed  Google Scholar 

  108. Mehra RD, Sharma K, Nyakas C, Vij U (2005) Estrogen receptor alpha and beta immunoreactive neurons in normal adult and aged female rat hippocampus: a qualitative and quantitative study. Brain Res 1056:22–35. https://doi.org/10.1016/j.brainres.2005.06.073

    CAS  Article  PubMed  Google Scholar 

  109. Merlo S, Spampinato SF, Sortino MA (2017) Estrogen and Alzheimer’s disease: still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 817:51–58. https://doi.org/10.1016/j.ejphar.2017.05.059

    CAS  Article  PubMed  Google Scholar 

  110. Micheli F, Palermo R, Talora C, Ferretti E, Vacca A, Napolitano M (2016) Regulation of proapoptotic proteins Bak1 and p53 by miR-125b in an experimental model of Alzheimer’s disease: protective role of 17β-estradiol. Neurosci Lett 629:234–240. https://doi.org/10.1016/j.neulet.2016.05.049

    CAS  Article  PubMed  Google Scholar 

  111. Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60:210–241. https://doi.org/10.1124/pr.107.08002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S, Alves SE (2005) Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol 491:81–95. https://doi.org/10.1002/cne.20724

    CAS  Article  PubMed  Google Scholar 

  113. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962. https://doi.org/10.1038/nm749

    CAS  Article  PubMed  Google Scholar 

  115. Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Feron F, Millet P (2018) Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol 55:6463–6479. https://doi.org/10.1007/s12035-017-0839-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560. https://doi.org/10.1038/s41591-019-0375-9

    CAS  Article  PubMed  Google Scholar 

  117. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85. https://doi.org/10.1186/1750-1326-6-85

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mukherjee J, Cardarelli RA, Cantaut-Belarif Y, Deeb TZ, Srivastava DP, Tyagarajan SK, Pangalos MN, Triller A, Maguire J, Brandon NJ, Moss SJ (2017) Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABAA receptors at inhibitory synapses. Proc Natl Acad Sci USA 114:11763–11768. https://doi.org/10.1073/pnas.1705075114

    CAS  Article  PubMed  Google Scholar 

  119. Mulnard RA, Cotman CW, Kawas C, van Dyck CH, Sano M, Doody R, Koss E, Pfeiffer E, Jin S, Gamst A, Grundman M, Thomas R, Thal LJ (2000) Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s disease cooperative study. JAMA 283:1007–1015. https://doi.org/10.1001/jama.283.8.1007

    CAS  Article  PubMed  Google Scholar 

  120. Murphy DD, Cole NB, Segal M (1998) Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc Natl Acad Sci USA 95:11412–11417. https://doi.org/10.1073/pnas.95.19.11412

    CAS  Article  PubMed  Google Scholar 

  121. Nakamura NH, McEwen BS (2005) Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: a potential role for neuropeptide Y. Neuroscience 136:357–369. https://doi.org/10.1016/j.neuroscience.2005.07.056

    CAS  Article  PubMed  Google Scholar 

  122. Negah SS, Khooei A, Samini F, Gorji A (2017) Laminin-derived Ile-Lys-Val-ala-Val: a promising bioactive peptide in neural tissue engineering in traumatic brain injury. Cell Tissue Res 371(2):223–236. https://doi.org/10.1007/s00441-017-2717-6

    CAS  Article  Google Scholar 

  123. Nilsen J, Chen S, Brinton RD (2002) Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res 930:216–234. https://doi.org/10.1016/s0006-8993(02)02254-0

    CAS  Article  PubMed  Google Scholar 

  124. Numakawa T, Yokomaku D, Richards M, Hori H, Adachi N, Kunugi H (2010) Functional interactions between steroid hormones and neurotrophin BDNF. World J Biol Chem 1:133–143. https://doi.org/10.4331/wjbc.v1.i5.133

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nuttall J, Oteiza P (2012) Zinc and the ERK kinases in the developing brain. Neurotox Res 21:128–141. https://doi.org/10.1007/s12640-011-9291-6

    CAS  Article  PubMed  Google Scholar 

  126. Oberlander JG, Woolley CS (2016) 17β-Estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci 36:2677–2690. https://doi.org/10.1523/JNEUROSCI.4437-15.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. O’Leime CS, Cryan JF, Nolan YM (2017) Nuclear deterrents: intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 66:394–412. https://doi.org/10.1016/j.bbi.2017.07.153

    CAS  Article  PubMed  Google Scholar 

  128. Ormerod B, Lee TTY, Galea L (2003) Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol 55:247–260. https://doi.org/10.1002/neu.10181

    CAS  Article  PubMed  Google Scholar 

  129. Pawluski JL, Brummelte S, Barha CK, Crozier TM, Galea LA (2009) Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol 30:343–357. https://doi.org/10.1016/j.yfrne.2009.03.007

    CAS  Article  PubMed  Google Scholar 

  130. Perez SE, Chen EY, Mufson EJ (2003) Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Dev Brain Res 145:117–139. https://doi.org/10.1016/S0165-3806(03)00223-2

    CAS  Article  Google Scholar 

  131. Pfaff D, Keiner M (1973) Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol 151:121–158. https://doi.org/10.1002/cne.901510204

    CAS  Article  PubMed  Google Scholar 

  132. Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res 95:671–680. https://doi.org/10.1002/jnr.23827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. Pike CJ, Carroll JC, Rosario ER, Barron AM (2009) Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol 30(2):239–258. https://doi.org/10.1016/j.yfrne.2009.04.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633. https://doi.org/10.1016/j.bbamcr.2010.12.012

    CAS  Article  PubMed  Google Scholar 

  135. Polani PE (2000) Olfactory dysfunction in Alzheimer’s disease. Lancet 355:1015. https://doi.org/10.1016/S0140-6736(05)74756-5

    CAS  Article  PubMed  Google Scholar 

  136. Pooley AE, Luong M, Hussain A, Nathan BP (2015) Neurite outgrowth promoting effect of 17-β estradiol is mediated through estrogen receptor alpha in an olfactory epithelium culture. Brain Res 1624:19–27. https://doi.org/10.1016/j.brainres.2015.07.015

    CAS  Article  PubMed  Google Scholar 

  137. Prat A, Behrendt M, Marcinkiewicz E, Boridy S, Sairam RM, Seidah NG, Maysinger D (2011) A novel mouse model of Alzheimer’s disease with chronic estrogen deficiency leads to glial cell activation and hypertrophy. J Aging Res 2011:251517. https://doi.org/10.4061/2011/251517

    Article  PubMed  PubMed Central  Google Scholar 

  138. Price RH, Handa RJ (2000) Expression of estrogen receptor-beta protein and mRNA in the cerebellum of the rat. Neurosci Lett 288:115–118. https://doi.org/10.1016/S0304-3940(00)01221-0

    CAS  Article  PubMed  Google Scholar 

  139. Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7:715–726. https://doi.org/10.1038/nrendo.2011.122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99(9):6364–6369. https://doi.org/10.1073/pnas.092136199

    CAS  Article  PubMed  Google Scholar 

  141. Ridler C (2018) Exercise wards off Alzheimer disease by boosting neurogenesis and neuroprotective factors. Nat Rev Neurol 14(11):632. https://doi.org/10.1038/s41582-018-0085-9

    CAS  Article  PubMed  Google Scholar 

  142. Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+-Cl-cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562:27–36. https://doi.org/10.1113/jphysiol.2004.077495

    CAS  Article  PubMed  Google Scholar 

  143. Rodriguez JJ, Verkhratsky A (2011) Neurogenesis in Alzheimer’s disease. J Anat 219:78–89. https://doi.org/10.1111/j.1469-7580.2011.01343.x

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ruiz-Palmero I, Hernando M, Garcia-Segura LM, Arevalo MA (2013) G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17β-estradiol in developing hippocampal neurons. Mol Cell Endocrinol 372:105–115. https://doi.org/10.1016/j.mce.2013.03.018

    CAS  Article  PubMed  Google Scholar 

  145. Ryan J, Carrière I, Carcaillon L, Dartigues JF, Auriacombe S, Rouaud O, Berr C, Ritchie K, Scarabin PY, Ancelin ML (2014) Estrogen receptor polymorphisms and incident dementia: the prospective 3C study. Alzheimers Dement 10(1):27–35. https://doi.org/10.1016/j.jalz.2012.12.008

    Article  PubMed  Google Scholar 

  146. Sachs M, Pape HC, Speckmann EJ, Gorji A (2007) The effect of estrogen and progesterone on spreading depression in rat neocortical tissues. Neurobiol Dis 25:27–34. https://doi.org/10.1016/j.nbd.2006.08.013

    CAS  Article  PubMed  Google Scholar 

  147. Sager T, Kashon ML, Krajnak K (2018) Estrogen and environmental enrichment differentially affect neurogenesis, dendritic spine immunolabeling and synaptogenesis in the hippocampus of young and reproductively senescent female rats. Neuroendocrinology 106:252–263. https://doi.org/10.1159/000479699

    CAS  Article  PubMed  Google Scholar 

  148. Sailor KA, Ming GL, Song H (2006) Neurogenesis as a potential therapeutic strategy for neurodegenerative diseases. Expert Opin Biol Ther 6:879–890. https://doi.org/10.1517/14712598.6.9.879

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Sawai T, Bernier F, Fukushima T, Hashimoto T, Ogura H, Nishizawa Y (2002) Estrogen induces a rapid increase of calcium-calmodulin-dependent protein kinase II activity in the hippocampus. Brain Res 950:308–311. https://doi.org/10.1016/s0006-8993(02)03186-4

    CAS  Article  PubMed  Google Scholar 

  150. Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86:1659–1669. https://doi.org/10.1002/jnr.21604

    CAS  Article  PubMed  Google Scholar 

  151. Scharfman HE, MacLusky NJ (2006) Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 27:415–435. https://doi.org/10.1016/j.yfrne.2006.09.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Scharfman HE, MacLusky NJ (2008) Estrogen–growth factor interactions and their contributions to neurological disorders. Headache 48:S77–S89. https://doi.org/10.1111/j.1526-4610.2008.01200.x

    Article  PubMed  PubMed Central  Google Scholar 

  153. Scharfman HE, Mercurio TC, Goodman JH, Wilson MA, MacLusky NJ (2003) Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor. J Neurosci 23:11641–11652. https://doi.org/10.1523/JNEUROSCI.23-37-11641.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348–356. https://doi.org/10.1016/j.expneurol.2004.11.016

    CAS  Article  PubMed  Google Scholar 

  155. Seo SY, Moon JY, Kang SY, Kwon OS, Kwon S, Bang SK, Kim SP, Choi KH, Ryu Y (2018) An estradiol-independent BDNF-NPY cascade is involved in the antidepressant effect of mechanical acupuncture instruments in ovariectomized rats. Sci Rep 8:5849. https://doi.org/10.1038/s41598-018-23824-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Sha S, Hong J, Qu WJ, Lu ZH, Li L, Yu WF, Chen L (2015) Sex-related neurogenesis decrease in hippocampal dentate gyrus with depressive-like behaviors in sigma-1 receptor knockout mice. Eur Neuropsychopharmacol 25:1275–1286. https://doi.org/10.1016/j.euroneuro.2015.04.021

    CAS  Article  PubMed  Google Scholar 

  157. Sharma K, Mehra RD, Dhar P, Vij U (2007) Chronic exposure to estrogen and tamoxifen regulates synaptophysin and phosphorylated cAMP response element-binding (CREB) protein expression in CA1 of ovariectomized rat hippocampus. Brain Res 1132:10–19. https://doi.org/10.1016/j.brainres.2006.11.027

    CAS  Article  PubMed  Google Scholar 

  158. Shohayeb B, Diab M, Ahmed M, Ng DCH (2018) Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 7:4. https://doi.org/10.1186/s40035-018-0109-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. Shughrue PJ, Merchenthaler I (2001) Distribution of estrogen receptor beta immunoreactivity in the rat central nervous system. J Comp Neurol 436:64–81. https://doi.org/10.1002/cne.1054

    CAS  Article  PubMed  Google Scholar 

  160. Simpkins JW, Singh M (2008) More than a decade of estrogen neuroprotection. Alzheimers Dement 4:S131–S136. https://doi.org/10.1016/j.jalz.2007.10.009

    CAS  Article  PubMed  Google Scholar 

  161. Singh M, Meyer EM, Simpkins JW (1995) The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 136:2320–2324. https://doi.org/10.1210/endo.136.5.7720680

    CAS  Article  PubMed  Google Scholar 

  162. Sohrabji F, Miranda R, Toran-Allerand CD (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92:11110–11114. https://doi.org/10.1073/pnas.92.24.11110

    CAS  Article  PubMed  Google Scholar 

  163. Solum DT, Handa RJ (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci 22:2650–2659. https://doi.org/10.1523/JNEUROSCI.22-07-02650.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. Sopova K, Gatsiou K, Stellos K, Laske C (2014) Dysregulation of neurotrophic and haematopoietic growth factors in Alzheimer’s disease: from pathophysiology to novel treatment strategies. Curr Alzheimer Res 11:27–39. https://doi.org/10.2174/1567205010666131120100743

    CAS  Article  PubMed  Google Scholar 

  165. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381. https://doi.org/10.1038/nature25975

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227. https://doi.org/10.1016/j.cell.2013.05.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Stancel GM, Gardner RM, Kirkland JL, Lin TH, Lingham RB, Loose-Mitchell DS, Mukku VR, Orengo CA, Verner G (1987) Interactions between estrogen and EGF in uterine growth and function. Adv Exp Med Biol 230:99–118. https://doi.org/10.1007/978-1-4684-1297-0_6

    CAS  Article  PubMed  Google Scholar 

  168. Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52. https://doi.org/10.1196/annals.1427.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. Struble RG, Nathan BP, Cady C, Cheng X, McAsey M (2007) Estradiol regulation of astroglia and apolipoprotein E: an important role in neuronal regeneration. Exp Gerontol 42:54–63. https://doi.org/10.1016/j.exger.2006.05.013

    CAS  Article  PubMed  Google Scholar 

  170. Tanapat P, Hastings NB, Reeves AJ, Gould E (1999) Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 19:5792–5801. https://doi.org/10.1523/JNEUROSCI.19-14-05792.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. Tanapat P, Hastings NB, Gould E (2005) Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose-and time-dependent manner. J Comp Neurol 481:252–265. https://doi.org/10.1002/cne.20385

    CAS  Article  PubMed  Google Scholar 

  172. Tang SS, Ren Y, Ren XQ, Cao JR, Hong H, Ji H, Hu QH (2019) ERα and/or ERβ activation ameliorates cognitive impairment, neurogenesis and apoptosis in type 2 diabetes mellitus mice. Exp Neurol 311:33–43. https://doi.org/10.1016/j.expneurol.2018.09.002

    CAS  Article  PubMed  Google Scholar 

  173. Teixeira CM, Pallas-Bazarra N, Bolos M, Terreros-Roncal J, Avila J, Llorens-Martin M (2018) Untold new beginnings: adult hippocampal neurogenesis and Alzheimer’s disease. J Alzheimers Dis 64:S497–S505. https://doi.org/10.3233/JAD-179918

    Article  PubMed  Google Scholar 

  174. Tensaouti Y, Stephanz EP, Yu TS, Kernie SG (2018) ApoE regulates the development of adult newborn hippocampal neurons. eNeuro 5(4):1–45. https://doi.org/10.1523/ENEURO.0155-18.2018

    Article  Google Scholar 

  175. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LK, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8(1):76–103. https://doi.org/10.1021/nn405077y

    CAS  Article  PubMed  Google Scholar 

  176. Toran-Allerand CD (2004) Minireview: a plethora of estrogen receptors in the brain: where will it end? Endocrinology 145:1069–1074. https://doi.org/10.1210/en.2003-1462

    CAS  Article  PubMed  Google Scholar 

  177. Trivino-Paredes J, Patten AR, Gil-Mohapel J, Christie BR (2016) The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 41:23–43. https://doi.org/10.1016/j.yfrne.2016.03.001

    CAS  Article  PubMed  Google Scholar 

  178. Tschiffely AE, Schuh RA, Prokai-Tatrai K, Ottinger MA, Prokai L (2018) An exploratory investigation of brain-selective estrogen treatment in males using a mouse model of Alzheimer’s disease. Horm Behav 98:16–21. https://doi.org/10.1016/j.yhbeh.2017.11.015

    CAS  Article  PubMed  Google Scholar 

  179. Tuscher JJ, Luine V, Frankfurt M, Frick KM (2016) Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus. J Neurosci 36(5):1483–1489. https://doi.org/10.1523/JNEUROSCI.3135-15.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. Vaucher E, Reymond I, Najaffe R, Kar S, Quirion R, Miller MM, Franklin KB (2002) Estrogen effects on object memory and cholinergic receptors in young and old female mice. Neurobiol Aging 23:87–95. https://doi.org/10.1016/S0197-4580(01)00250-0

    CAS  Article  PubMed  Google Scholar 

  181. Vezzani A, Sperk G, Colmers WF (1999) Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 22:25–30. https://doi.org/10.1016/S0166-2236(98)01284-3

    CAS  Article  PubMed  Google Scholar 

  182. Von Schassen C, Fester L, Prange-Kiel J, Lohse C, Huber C, Bottner M, Rune G (2006) Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol 18:847–856. https://doi.org/10.1111/j.1365-2826.2006.01484.x

    CAS  Article  Google Scholar 

  183. Wallace M, Luine V, Arellanos A, Frankfurt M (2006) Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res 1126:176–182. https://doi.org/10.1016/j.brainres.2006.07.064

    CAS  Article  PubMed  Google Scholar 

  184. Wang J, Tanila H, Puolivali J, Kadish I, van Groen T (2003) Gender differences in the amount and deposition of amyloidβ in APPswe and PS1 double transgenic mice. Neurobiol Dis 14:318–327. https://doi.org/10.1016/j.nbd.2003.08.009

    CAS  Article  PubMed  Google Scholar 

  185. Wang S, Ren P, Li X, Guan Y, Zhang YA (2011) 17β-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene BCL2. J Mol Neurosci 45:236–245. https://doi.org/10.1007/s12031-011-9500-z

    CAS  Article  PubMed  Google Scholar 

  186. Wang C, Jie C, Dai X (2014) Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Rev Neurosci 25(2):255–268. https://doi.org/10.1515/revneuro-2013-0055

    CAS  Article  PubMed  Google Scholar 

  187. Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Xing Q, Zhang Y, Zhang K, Li Q, Zhang T, Wu J, Yang GL, Guan F, Wang J (2017) Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav Brain Res 339:297–304. https://doi.org/10.1016/j.bbr.2017.10.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. Wharton W, Gleason CE, Lorenze KR, Markgraf TS, Ries ML, Carlsson CM, Asthana S (2009) Potential role of estrogen in the pathobiology and prevention of Alzheimer’s disease. Am J Transl Res 1:131–147

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Wide JK, Hanratty K, Ting J, Galea LA (2004) High level estradiol impairs and low level estradiol facilitates non-spatial working memory. Behav Brain Res 155(1):45–53. https://doi.org/10.1016/j.bbr.2004.04.001

    CAS  Article  PubMed  Google Scholar 

  190. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jonsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532. https://doi.org/10.1016/S1474-4422(16)00062-4

    Article  PubMed  Google Scholar 

  191. Woolley CS, McEwen BS (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 12:2549–2554. https://doi.org/10.1523/JNEUROSCI.12-07-02549.1992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  192. Wu TW, Wang JM, Chen S, Brinton RD (2005) 17β-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 135(1):59–72. https://doi.org/10.1016/j.neuroscience.2004.12.027

    CAS  Article  PubMed  Google Scholar 

  193. Wu SY, Chen YW, Tsai SF, Wu SN, Shih YH, Jiang-Shieh YF, Yang TT, Kuo YM (2016) Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K(+) channel. Sci Rep 6:22864. https://doi.org/10.1038/srep22864

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. Yaffe K, Haan M, Byers A, Tangen C, Kuller L (2000a) Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction. Neurology 54:1949–1954. https://doi.org/10.1212/WNL.54.10.1949

    CAS  Article  PubMed  Google Scholar 

  195. Yaffe K, Lui LY, Grady D, Cauley J, Kramer J, Cummings SR (2000b) Cognitive decline in women in relation to non-protein-bound oestradiol concentrations. Lancet 356:708–712. https://doi.org/10.1016/S0140-6736(00)02628-3

    CAS  Article  PubMed  Google Scholar 

  196. Yang ZD, Yu J, Zhang Q (2013) Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women: a systematic review of randomized controlled trials. Maturitas 75:341–348. https://doi.org/10.1016/j.maturitas.2013.05.010

    CAS  Article  PubMed  Google Scholar 

  197. Ye M, Chung HS, An YH, Lim SJ, Choi W, Yu AR, Kim JS, Kang M, Cho S, Shim I, Bae H (2016) Standardized herbal formula PM012 decreases cognitive impairment and promotes neurogenesis in the 3xTg AD mouse model of Alzheimer’s disease. Mol Neurobiol 53(8):5401–5412. https://doi.org/10.1007/s12035-015-9458-x

    CAS  Article  PubMed  Google Scholar 

  198. Yi H, Bao X, Tang X, Fan X, Xu H (2016) Estrogen modulation of calretinin and BDNF expression in midbrain dopaminergic neurons of ovariectomised mice. J Chem Neuroanat 77:60–67. https://doi.org/10.1016/j.jchemneu.2016.05.005

    CAS  Article  PubMed  Google Scholar 

  199. Yildirim M, Janssen WG, Lou WW, Akama KT, McEwen BS, Milner TA, Morrison JH (2011) Effects of estrogen and aging on the synaptic distribution of phosphorylated Akt-immunoreactivity in the CA1 region of the female rat hippocampus. Brain Res 1379:98–108. https://doi.org/10.1016/j.brainres.2010.07.053

    CAS  Article  PubMed  Google Scholar 

  200. Yue X, Lu M, Lancaster T, Cao P, Honda SI, Staufenbiel M, Harada N, Zhong Z, Shen Y, Li R (2005) Brain estrogen deficiency accelerates Aβ plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci USA 102:19198–19203. https://doi.org/10.1073/pnas.0505203102

    CAS  Article  PubMed  Google Scholar 

  201. Zadran S, Qin Q, Bi X, Zadran H, Kim Y, Foy MR, Thompson R, Baudry M (2009) 17-β-estradiol increases neuronal excitability through MAP kinase-induced calpain activation. Proc Natl Acad Sci USA 106:21936–21941. https://doi.org/10.1073/pnas.0912558106

    Article  PubMed  Google Scholar 

  202. Zhao L, Brinton RD (2007) Estrogen receptor α and β differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res 1172:48–59. https://doi.org/10.1016/j.brainres.2007.06.092

    CAS  Article  PubMed  Google Scholar 

  203. Zhao L, Jin C, Mao Z, Gopinathan MB, Rehder K, Brinton RD (2007) Design, synthesis, and estrogenic activity of a novel estrogen receptor modulator a hybrid structure of 17β-estradiol and vitamin E in hippocampal neurons. J Med Chem 50:4471–4481. https://doi.org/10.1021/jm070546x

    CAS  Article  PubMed  Google Scholar 

  204. Zheng JY, Liang KS, Wang XJ, Zhou XY, Sun J, Zhou SN (2017) Chronic estradiol administration during the early stage of Alzheimer’s disease pathology rescues adult hippocampal neurogenesis and ameliorates cognitive deficits in Aβ1–42 Mice. Mol Neurobiol 54:7656–7669. https://doi.org/10.1007/s12035-016-0181-z

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ali Jahanbazi Jahan-Abad for his assistance in computer-aided design of figures.

Funding

This study was supported by the Iran National Science Foundation (INSF), National Institute for Medical Research (NIMAD; 964650), and the German Academic Exchange Service (DAAD; 57348208 and 57403633) to AG.

Author information

Affiliations

Authors

Contributions

SSN, VH, and HRM conceived the project, carried out analysis of previous topics, and wrote the preliminary draft. AG contributed to the final preparation of the manuscript and supervised the project. All authors contributed to the final draft of manuscript.

Corresponding author

Correspondence to Ali Gorji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical Approval

The manuscript is a review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahab-Negah, S., Hajali, V., Moradi, H.R. et al. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer’s Disease. Cell Mol Neurobiol 40, 283–299 (2020). https://doi.org/10.1007/s10571-019-00733-0

Download citation

Keywords

  • Neurodegeneration
  • Dementia
  • Hormone
  • Neurogenesis
  • Cell therapy
  • Brain