Skip to main content

Advertisement

Log in

Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease. Because the characterization of new related molecules with improved specificity and enhanced pharmacological profiles may represent a crucial step to develop more efficient steroid-based therapies, we have also discussed the potential of novel synthetic analogs of allopregnanolone as valuable molecules for the treatment of neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645

    Article  CAS  PubMed  Google Scholar 

  • Afrazi S, Esmaeili-Mahani S (2014) Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats. Iran J Basic Med Sci 17(5):312–317

    PubMed  PubMed Central  Google Scholar 

  • Balasubramanian B, Portillo W, Reyna A, Chen JZ, Moore AN, Dash PK, Mani SK (2008) Nonclassical mechanisms of progesterone action in the brain: I. Protein kinase C activation in the hypothalamus of female rats. Endocrinology 149(11):5509–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balthazart J, Choleris E, Remage-Healey L (2018) Steroids and the brain: 50 years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm Behav 99:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulieu EE (1999) Neuroactive neurosteroids: dehydroepiandrosterone (DHEA) and DHEA sulphate. Acta Paediatr Suppl 88(433):78–80

    Article  CAS  PubMed  Google Scholar 

  • Baulieu EE (2001) Neurosteroids, their role in brain physiology: neurotrophycity, memory. Aging J Bull Acad Natl Med 185:349–372

    CAS  Google Scholar 

  • Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37(3):395–403

    Article  CAS  PubMed  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6(7):565–575

    Article  CAS  PubMed  Google Scholar 

  • Boonyaratanakornkit V, Bi Y, Rudd M, Edwards DP (2008) The role and mechanism of progesterone receptor activation of extra-nuclear signaling pathways in regulating gene transcription and cell cycle progression. Steroids 73:922–928

    Article  CAS  PubMed  Google Scholar 

  • Brinton RD (2013) Neurosteroids as regenerative agents in the brain: therapeutic implications. Nat Rev Endocrinol 9(4):241–250

    Article  CAS  PubMed  Google Scholar 

  • Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29(2):313–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns BE, Arendt-Nielsen L, Sacerdote P (2015) Perspectives in pain research 2014: neuroinflammation and glial cell activation: the cause of transition from acute to chronic pain? Scand J Pain 6(1):3–6

    Article  PubMed  Google Scholar 

  • Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P (2018) Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep 8(1):3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudle RM, Perez FM, King C, Yu CG, Yezierski RP (2003) N-methyl-D-aspartate receptor subunit expression and phosphorylation following excitotoxic spinal cord injury in rats. Neurosci Lett 349(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Cermenati G, Giatti S, Cavaletti G, Bianchi R, Maschi O, Pesaresi M, Abbiati F, Volonterio A, Saez E, Caruso D, Melcangi RC, Mitro N (2010) Activation of the liver X receptor increases neuroactive steroid levels and protects from diabetes-induced peripheral neuropathy. J Neurosci 30(36):11896–11901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JQ, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793(10):1540–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SR, Roh DH, Yoon SY, Kwon SG, Choi HS, Han HJ, Beitz AJ, Lee JH (2016) Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology 111:34–46

    Article  CAS  PubMed  Google Scholar 

  • Coirini H, Gouezou M, Lier P, Delespierre B, Pianos A, Eychenne B, Schumacher M, Guennoun R (2002) 3-beta hydroxysteroid dehydrogenase expression in rat spinal cord. Neuroscience 113:883–891

    Article  CAS  PubMed  Google Scholar 

  • Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002

    Article  PubMed  PubMed Central  Google Scholar 

  • Coronel MF, Labombarda F, Villar MJ, De Nicola AF, González SL (2011a) Progesterone prevents allodynia after experimental spinal cord injury. J Pain 12(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Coronel MF, Labombarda F, Roig P, Villar MJ, De Nicola AF, González SL (2011b) Progesterone prevents nerve injury-induced allodynia and spinal NMDA receptor upregulation in rats. Pain Med 12(8):1249–1261

    Article  PubMed  Google Scholar 

  • Coronel MF, Labombarda F, De Nicola AF, Gonzalez SL (2014) Progesterone reduces the expression of spinal cycloxygenase-2 and inducible nitric oxide synthase and prevents allodynia in a rat model of central neuropathic pain. Eur J Pain 18(3):348–359

    Article  CAS  PubMed  Google Scholar 

  • Coronel MF, Raggio MC, Adler NS, De Nicola AF, Labombarda F, Gonzalez SL (2016a) Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: implications for neuropathic pain. J Neuroimmunol 292:85–92

    Article  CAS  PubMed  Google Scholar 

  • Coronel MF, Sanchez Granel ML, Raggio MC, Adler NS, De Nicola AF, Labombarda F, Gonzalez SL (2016b) Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme 5a-reductase in the dorsal spinal cord of animals with neuropathic pain: effects of progesterone administration. Neurosci Lett 624:23–28

    Article  CAS  PubMed  Google Scholar 

  • Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 78(8):4704–4707

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R, Baulieu EE, P. R (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res 270(1):119–125

    Article  PubMed  Google Scholar 

  • Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dableh LJ, Henry JL (2011) Progesterone prevents development of neuropathic pain in a rat model: timing and duration of treatment are critical. J Pain Res 4:91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Nicola AF, Coronel MF, Garay LI, Gargiulo-Monachelli G, Gonzalez Deniselle MC, Gonzalez SL, Labombarda F, Meyer M, Guennoun R, Schumacher M (2013) Therapeutic effects of progesterone in animal models of neurological disorders. CNS & Neurol Disord Drug Targets 12(8):1205–1218

    Google Scholar 

  • De Nicola AF, Garay L, Meyer M, Guennoun R, Sitruk-Ware R, Schumacher M, Gonzalez Deniselle MC (2018) Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J Neuroendocrinol 30(2):e12502

    Article  CAS  Google Scholar 

  • Do Rego JL, Vaudry H (2016) Comparative aspects of neurosteroidogenesis: from fish to mammals. Gen Comp Endocrinol 227:120–129

    Article  CAS  PubMed  Google Scholar 

  • Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30(3):259–301

    Article  CAS  PubMed  Google Scholar 

  • Doyle T, Bryant L, Muscoli C, Cuzzocrea S, Esposito E, Chen Z, Salvemini D (2010) Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci Lett 483(2):85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DL, Bouhassira D, Cruccu G, Freeman R, Hansson P, Nurmikko T, Raja SN, Rice AS, Serra J, Smith BH, Treede RD, Jensen TS (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157(8):1599–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flatters SJ (2015) The contribution of mitochondria to sensory processing and pain. Prog Mol Biol Transl Sci 131:119–146

    Article  PubMed  Google Scholar 

  • Fréchou M, Zhang S, Liere P, Delespierre B, Soyed N, Pianos A, Schumacher M, Mattern C, Guennoun R (2015) Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology 97:394–403

    Article  CAS  PubMed  Google Scholar 

  • Frye CA, Walf AA, Kohtz AS, Zhu Y (2013) Membrane progestin receptors in the midbrain ventral tegmental area are required for progesterone-facilitated lordosis of rats. Horm Behav 64(3):539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye CA, Koonce CJ, Walf AA (2014) Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 8:106

    PubMed  PubMed Central  Google Scholar 

  • Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R (2017) Role of sex hormones on brain mitochondrial function, with special reference to aging and neurodegenerative diseases. Front Aging Neurosci 9:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Kim HK, Chung JM, Chung K (2005) Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 116(1–2):62–72

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Kim HK, Chung JM, Chung K (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131(3):262–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garay LI, González Deniselle MC, Brocca ME, Lima A, Roig P, De Nicola AF (2012) Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 226:40–50

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ovejero D, González S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F (2014) Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma 31(9):857–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Segura LM, Melcangi RC (2006) Steroids and glial cell function. Glia 54(6):485–498

    Article  PubMed  Google Scholar 

  • Gardoni F, Boraso M, Zianni E, Corsini E, Galli CL, Cattabeni F, Marinovich M, Di Luca M, Viviani B (2011) Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1β and NMDA stimulation. J Neuroinflammation 18(1):14. https://doi.org/10.1186/1742-2094-1188-1114

    Article  Google Scholar 

  • Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM, Melcangi RC (2015) Neuroactive steroids and the peripheral nervous system: an update. Steroids 103:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González SL, Coronel MF (2016) Beyond reproduction: the role of progesterone in neuropathic pain after spinal cord injury. Neural Regen Res 11(8):1238–1240

    Article  PubMed  PubMed Central  Google Scholar 

  • González SL, Labombarda F, González-Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 125:605–614

    Article  CAS  PubMed  Google Scholar 

  • González SL, López-Costa JJ, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2009) Progesterone effects on neuronal ultrastructure and expression of microtubule-associated protein 2 (MAP2) in rats with acute spinal cord injury. Cell Mol Neurobiol 29(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF (2011) Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 7(3):403–411

    CAS  PubMed  Google Scholar 

  • Goodchild CS, Guo Z, Nadeson R (2000) Antinociceptive properties of neurosteroids I. Spinally-mediated antinociceptive effects of water-soluble aminosteroids. Pain 88(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Grace PM, Gaudet AD, Staikopoulos V, Maier SF, Hutchinson MR, Salvemini D, Watkins LR (2016) Nitroxidative signaling mechanisms in pathological pain. Trends Neurosci 39(12):862–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm A, Lim YA, Mensah-Nyagan AG, Götz J, Eckert A (2012) Alzheimer’s disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 46(1):151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A (2014) Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders. Biochim Biophys Acta 1842:2427–2438

    Article  CAS  PubMed  Google Scholar 

  • Grimm A, Biliouris EE, Lang UE, Götz J, Mensah-Nyagan AG, Eckert A (2016a) Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein. Cell Mol Life Sci 73(1):201–215

    Article  CAS  PubMed  Google Scholar 

  • Grimm A, Mensah-Nyagan AG, Eckert A (2016b) Alzheimer, mitochondria and gender. Neurosci Biobehav Rev 67:89–101

    Article  CAS  PubMed  Google Scholar 

  • Grossman SD, Wolfe BB, Yasuda RP, Wrathall JR (2000) Changes in NMDA receptor subunit expression in response to contusive spinal cord injury. J Neurochem 75(1):174–184

    Article  CAS  PubMed  Google Scholar 

  • Guennoun R, Meffre D, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Stein DG, De Nicola AF, Schumacher M (2008) The membrane-associated progesterone-binding protein 25-Dx: expression, cellular localization and up-regulation after brain and spinal cord injuries. Brain Res Rev 57(2):493–505

    Article  CAS  PubMed  Google Scholar 

  • Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M (2015) Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 146:48–61

    Article  CAS  PubMed  Google Scholar 

  • Guo BL, Sui BD, Wang XY, Wei YY, Huang J, Chen J, Wu SX, Li YQ, Wang YY, Yang YL (2013) Significant changes in mitochondrial distribution in different pain models of mice. Mitocondrion 13:292–297

    Article  CAS  Google Scholar 

  • Gwak YS, Hassler SE, Hulsebosch CE (2013) Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain 154(9):1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Gwak YS, Hulsebosch CE, Leem JW (2017) Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast. https://doi.org/10.1155/2017/2480689

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444(7118):486–489

    Article  CAS  PubMed  Google Scholar 

  • Hulsebosch CE, Hains BC, Crown ED, Carlton SM (2009) Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 60(1):202–213

    Article  CAS  PubMed  Google Scholar 

  • Inquimbert P, Moll M, Latremoliere A, Tong CK, Whang J, Sheehan GF, Smith BM, Korb E, Athié MCP, Babaniyi O, Ghasemlou N, Yanagawa Y, Allis CD, Hof PR, Scholz J (2018) NMDA receptor activation underlies the loss of spinal dorsal horn neurons and the transition to persistent pain after peripheral nerve injury. Cell Rep 23:2678–2689

    Article  CAS  Google Scholar 

  • Irwin RW, Solinsky CM, Brinton RD (2014) Frontiers in therapeutic development of allopregnanolone for Alzheimer’s disease and other neurological disorders. Front Cell Neurosci 8:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Irwin RW, Solinsky CM, Loya CM, Salituro FG, Rodgers KE, Bauer G, Rogawski MA, Brinton RD (2015) Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer’s disease. PLoS ONE 10(6):e0128313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen TS, Finnerup NB (2014) Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 13(9):924–935

    Article  PubMed  Google Scholar 

  • Jensen TS, Gottrup H, Sindrup SH, Bach FW (2001) The clinical picture of neuropathic pain. Eur J Pharmacol 429(1–3):1–11

    Article  CAS  PubMed  Google Scholar 

  • Jensen TS, Baron R, Haanpää M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152:2204–2205

    Article  PubMed  Google Scholar 

  • Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37(12):2478–2503

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Berta T, Nedergaard M (2013) Glia and pain: Is chronic pain a gliopathy? Pain 154:S10–S28

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji RR, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129(2):343–366

    Article  PubMed  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  PubMed  Google Scholar 

  • Karout M, Miesch M, Geoffroy P, Kraft S, Hofmann HD, Mensah-Nyagan AG, Kirsch M (2016) Novel analogs of allopregnanolone show improved efficiency and specificity in neuroprotection and stimulation of proliferation. J Neurochem 139(5):782–794

    Article  CAS  PubMed  Google Scholar 

  • Kibaly C, Meyer L, Patte-Mensah C, Mensah-Nyagan AG (2008) Biochemical and functional evidence for the control of pain mechanisms by dehydroepiandrosterone endogenously synthesized in the spinal cord. FASEB J 22(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111(1–2):116–124

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Chung JM, Chung K (2008) Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett 447(1):87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Shin HJ, Won KA, Yang KY, Ju JS, Park YY, Park JS, Bae YC, Ahn DK (2012) Progesterone produces antinociceptive and neuroprotective effects in rats with microinjected lysophosphatidic acid in the trigeminal nerve root. Mol Pain 8:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King SR, Stocco DM (2011) Steroidogenic acute regulatory protein expression in the central nervous system. Front Endocrinol (Lausanne) 2:72

    Article  Google Scholar 

  • King SR, Manna PR, Ishii T, Syapin PJ, Ginsberg SD, Wilson K, Walsh LP, Parker KL, Stocco DM, Smith RG, Lamb DJ (2002) An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci 22(24):10613–10620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labombarda F, Pianos A, Liere P, Eychenne B, González S, Cambourg A, De Nicola AF, Schumacher M, Guennoun R (2006) Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry. Endocrinology 147(4):1847–1859

    Article  CAS  PubMed  Google Scholar 

  • Labombarda F, Gonzalez SL, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2009) Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors and myelin proteins following spinal cord injury. Glia 57(8):884–897

    Article  PubMed  Google Scholar 

  • Labombarda F, Meffre D, Delespierre B, Krivokapic-Blondiaux S, Chastre A, Thomas P, Pang Y, Lydon JP, Gonzalez SL, De Nicola AF, Schumacher M, Guennoun R (2010) Membrane progesterone receptors localization in the mouse spinal cord. Neuroscience 166(1):94–106

    Article  CAS  PubMed  Google Scholar 

  • Labombarda F, González S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2011) Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231(1):135–146

    Article  CAS  PubMed  Google Scholar 

  • Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2015) A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol 154:274–284

    Article  CAS  PubMed  Google Scholar 

  • Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennet MVL, Zukin RS (2001) Protein kinase C modulates NMDA receptor traffiking and gating. Nat Neurosci 4(4):382–390

    Article  CAS  PubMed  Google Scholar 

  • Lavaque E, Sierra A, Azcoitia I, Garcia-Segura LM (2006) Steroidogenic acute regulatory protein in the brain. Neuroscience 138(3):741–747

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Kim HK, Kim JH, Chung K, Chung JM (2007) The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain 133:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Chung K, Chung JM (2010) Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol 103(1):382–391

    Article  CAS  PubMed  Google Scholar 

  • Lejri I, Grimm A, Miesch M, Geoffroy P, Eckert A, Mensah-Nyagan AG (2017) Allopregnanolone and its analog BR 297 rescue neuronal cells from oxidative stress-induced death through bioenergetic improvement. Biochim Biophys Acta 1863(3):631–642

    Article  CAS  Google Scholar 

  • Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, García-Segura LM, Lauria G, Roglio I, Melcangi RC (2007) Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience 144(4):1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Lim G, Wang S, Zeng Q, Sung B, Yang L, Mao J (2005) Expression of spinal NMDA receptor and PKCgamma after chronic morphine is regulated by spinal glucocorticoid receptor. J Neurosci 25(48):11145–11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  • Little JW, Cuzzocrea S, Bryant L, Esposito E, Doyle T, Rausaria S, Neumann WL, Salvemini D (2013) Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance. Pain 154(7):978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li W, Dai L, Zhang T, Xia W, Liu H, Ma K, Xu J, Jin Y (2014) Early repeated administration of progesterone improves the recovery of neuropathic pain and modulates spinal 18 kDa-translocator protein (TSPO) expression. J Steroid Biochem Mol Biol 143:130–140

    Article  CAS  PubMed  Google Scholar 

  • Lösel RM, Besong D, Peluso JJ, Wehling M (2008) Progesterone receptor membrane component 1–many tasks for a versatile protein. Steroids 73(9–10):929–934

    Article  CAS  PubMed  Google Scholar 

  • Martin WJ, Malmberg AB, Basbaum AI (2001) PKCgamma contributes to a subset of the NMDA-dependent spinal circuits that underlie injury-induced persistent pain. J Neurosci 21(14):5321–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui D, Sakari M, Sato T, Murayama A, Takada I, Kim M, Takeyama K, Kato S (2002) Transcriptional regulation of the mouse steroid 5alpha-reductase type II gene by progesterone in brain. Nucleic Acids Res 30(6):1387–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice T, Grégoire C, Espallergues J (2006) Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 84(4):581–597

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Kalia M (2010) The role of corticosteroids and stress in chronic pain conditions. Metabolism 59:9–15

    Article  CAS  Google Scholar 

  • Meffre D, Delespierre B, Gouézou M, Leclerc P, Vinson GP, Schumacher M, Stein DG, Guennoun R (2005) The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury. J Neurochem 93(5):1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Meffre D, Labombarda F, Delespierre B, Chastre A, De Nicola AF, Stein DG, Schumacher M, Guennoun R (2013) Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience 231:111–124

    Article  CAS  PubMed  Google Scholar 

  • Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D (2014) Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 113:56–69

    Article  CAS  PubMed  Google Scholar 

  • Mensah-Nyagan AG, Do-Rego JL, Feuilloley M, Marcual A, Lange C, Pelletier G, Vaudry H (1996a) In vivo and in vitro evidence for the biosynthesis of testosterone in the telencephalon of the female frog. J Neurochem 67(1):413–422

    Article  CAS  PubMed  Google Scholar 

  • Mensah-Nyagan AM, Feuilloley M, Do-Rego JL, Marcual A, Lange C, Tonon MC, Pelletier G, Vaudry H (1996b) Localization of 17beta-hydroxysteroid dehydrogenase and characterization of testosterone in the brain of the male frog. Proc Natl Acad Sci USA 93(4):1423–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H (1999) Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51(1):63–81

    CAS  PubMed  Google Scholar 

  • Mensah-Nyagan AG, Kibaly C, Schaeffer V, Venard C, Meyer L, Patte-Mensah C (2008) Endogenous steroid production in the spinal cord and potential involvement in neuropathic pain modulation. J Steroid Biochem Mol Biol 109(3–5):286–293

    Article  CAS  PubMed  Google Scholar 

  • Mensah-Nyagan AG, Meyer L, Schaeffer V, Kibaly C, Patte-Mensah C (2009) Evidence for a key role of steroids in the modulation of pain. Psychoneuroendocrinology 34(S1):169–177

    Article  CAS  Google Scholar 

  • Mensah-Nyagan AG, Patte-Mensah C, Meyer L, Taleb O, Miesch M, Geoffroy P, Bressault B (2012) Derivatives of Allopregnanolone and of Epiallopregnanolone and, their preparation and their uses for treating a neuropathological condition. International publication number: WO 2012/127176 A1

  • Meyer L, Venard C, Schaeffer V, Patte-Mensah C, Mensah-Nyagan AG (2008) The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury. Neurobiol Dis 30(1):30–41

    Article  CAS  PubMed  Google Scholar 

  • Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2010) Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy. Cell Mol Life Sci 67(17):3017–3034

    Article  CAS  PubMed  Google Scholar 

  • Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2011) Allopregnanolone prevents and suppresses oxaliplatin-evoked painful neuropathy: multi-parametric assessment and direct evidence. Pain 152(1):170–181

    Article  CAS  PubMed  Google Scholar 

  • Mietto BS, Mostacada K, Martinez AM (2015) Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm. https://doi.org/10.1155/2015/251204

    Article  PubMed  PubMed Central  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  • Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol 583:1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi-Azani M, Ahmadiani A, Amini H (2011) Increase in formalin-induced tonic pain by 5alpha-reductase and aromatase inhibition in female rats. Pharmacol Biochem Behav 98(1):62–66

    Article  CAS  PubMed  Google Scholar 

  • Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, Esposito E, Masini E, Matuschak GM, Salvemini D (2007) Therapeutic manipulationof peroxynitrite attenuates the development of opiate-inducedantinociceptive tolerance in mice. J Clin Investig 117:3530–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeson R, Goodchild CS (2000) Antinociceptive properties of neurosteroids II. Experiments with Saffan and its components alphoxolone and alphadolone to reveal separation of anaesthetic and antinociceptive effects and the involvement of spinal GABAa receptors. Pain 88:31–39

    Article  CAS  PubMed  Google Scholar 

  • Nilsen J, Diaz Brinton R (2003) Mechanism of estrogen-mediated neuroprotection: regulation of mitochondrial calcium and Bcl-2 expression. Proc Natl Acad Sci USA 100(5):2842–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Malley BW, Tsai SY, Bagchi M, Weigel NL, Schrader WT, Tsai MJ (1991) Molecular mechanism of action of a steroid hormone receptor. Recent Prog Horm Res 47:1–24

    PubMed  Google Scholar 

  • Panzica GC, Melcangi RC (2008) The endocrine nervous system: source and target for neuroactive steroids. Brain Res Rev 57(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8):402–409

    Article  CAS  PubMed  Google Scholar 

  • Park ES, Gao X, Chung JM, Chung K (2006) Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 391(3):108–111

    Article  CAS  PubMed  Google Scholar 

  • Pathirathna S, Todorovic SM, Covey DF, Jevtovic-Todorovic V (2005a) 5alpha-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in rats with neuropathic pain. Pain 117(3):326–339

    Article  CAS  PubMed  Google Scholar 

  • Pathirathna S, Brimelow BC, Jagodic MM, Krishnan K, Jiang X, Zorumski CF, Mennerick S, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2005b) New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5alpha-reduced neuroactive steroids. Pain 114(3):429–443

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Kappes V, Freund-Mercier MJ, Tsutsui K, Mensah-Nyagan AG (2003) Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450 side chain cleavage, in sensory neural pathways. J Neurochem 86:1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Li S, Mensah-Nyagan AG (2004a) Impact of neuropathic pain on the gene expression and activity of cytochrome P450side-chain-cleavage in sensory neural networks. Cell Mol Life Sci 61(17):2274–2284

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Penning TM, Mensah-Nyagan AG (2004b) Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J Comp Neurol 477:286–299

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Kibaly C, Mensah-Nyagan AG (2005) Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. PNAS 102(25):9044–9049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patte-Mensah C, Kibaly C, Boudard D, Schaeffer V, Baglan A, Saredi S, Meyer L, Mensah-Nyagan AG (2006) Neurogenic pain and steroid sintesis in the spinal cord. J Mol Neurosci 28(1):17–31

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Meyer L, Schaeffer V, Mensah-Nyagan AG (2010) Selective regulation of 3 alpha-hydroxysteroid oxido-reductase expression in dorsal root ganglion neurons: a possible mechanism to cope with peripheral nerve injury-induced chronic pain. Pain 150(3):522–534

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG (2013) Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 113:70–78

    Article  CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG (2014) Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 113:70–78

    Article  CAS  PubMed  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    Article  CAS  PubMed  Google Scholar 

  • Peng HY, Chen GD, Lee SD, Lai CY, Chiu CH, Cheng CL, Chang YS, Hsieh MC, Tung KC, Lin TB (2009) Neuroactive steroids inhibit spinal reflex potentiation by selectively enhancing specific spinal GABA(A) receptor subtypes. Pain 143(1–2):12–20

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Caruso D, Melcangi RC (2010) Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Horm Behav 57(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi M, Giatti S, Spezzano R, Romano S, Diviccaro S, Borsello T, Mitro N, Caruso D, Garcia-Segura LM, Melcangi RC (2018) Axonal transport in a peripheral diabetic neuropathy model: sex-dimorphic features. Biol Sex Differ 9(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poisbeau P, Patte-Mensah C, Keller AF, Barrot M, Breton JD, Luis-Delgado OE, Freund-Mercier MJ, Mensah-Nyagan AG, Schlichter R (2005) Inflammatory pain upregulates spinal inhibition via endogenous neurosterois production. J Neurosci 25(50):11768–11776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, Morrow AL, Panzica GC, Melcangi RC (2016) Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. J Neuroendocrinol 28(2):12351

    Article  CAS  PubMed  Google Scholar 

  • Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren K, Dubne R, Murphy A, Hoffman GE (2000) Progesterone attenuates persistent inflammatory hyperalgesia in females rats: involvement of spinal NMDA receptor mechanism. Brain Res 865:272–277

    Article  CAS  PubMed  Google Scholar 

  • Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35(1):8–30

    Article  CAS  PubMed  Google Scholar 

  • Robel P, Baulieu E (1995) Neurosteroids: biosynthesis and function. Crit Rev Neurobiol 9(4):383–394

    CAS  PubMed  Google Scholar 

  • Roglio I, Bianchi R, Gotti S, Scurati S, Giatti S, Pesaresi M, Caruso D, Panzica GC, Melcangi RC (2008a) Neuroprotective effects of dihydroprogesterone and progesterone in an experimental model of nerve crush injury. Neuroscience 155(3):673–685

    Article  CAS  PubMed  Google Scholar 

  • Roglio I, Giatti S, Pesaresi M, Bianchi R, Cavaletti G, Lauria G, Garcia-Segura LM, Melcangi RC (2008b) Neuroactive steroids and peripheral neuropathy. Brain Res Rev 57(2):460–469

    Article  CAS  PubMed  Google Scholar 

  • Roglio I, Bianchi R, Camozzi F, Carozzi V, Cervellini I, Crippa D, Lauria G, Cavaletti G, Melcangi RC (2009) Docetaxel-induced peripheral neuropathy: protective effects of dihydroprogesterone and progesterone in an experimental model. J Peripher Nerv Syst 14(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Rudolph LM, Cornil CA, Mittelman-Smith MA, Rainville JR, Remage-Healey L, Sinchak K, Micevych PE (2016) Actions of steroids: new neurotransmitters. J Neurosci 36(45):11449–11458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvemini D, Neumann WL (2009) Peroxynitrite: a strategic linchpin of opioidanalgesic tolerance. Trends Pharmacol Sci 30:194–202

    Article  CAS  PubMed  Google Scholar 

  • Saredi S, Patte-Mensah C, Melcangi RC, Mensah-Nyagan AG (2005) Effect of streptozotocin-induced diabetes on the gene expression and biological activity of 3beta-hydroxysteroid dehydrogenase in the rat spinal cord. Neuroscience 135(3):869–877

    Article  CAS  PubMed  Google Scholar 

  • Sayeed I, Parvez S, Wali B, Siemen D, Stein DG (2009) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res 1263:165–173

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer V, Meyer L, Patte-Mensah C, Mensah-Nyagan AG (2010a) Progress in dorsal root ganglion neurosteroidogenic activity: basic evidence and pathophysiological correlation. Prog Neurobiol 92(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer V, Meyer L, Patte-Mensah C, Eckert A, Mensah-Nyagan AG (2010b) Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 58(2):169–180

    Article  PubMed  Google Scholar 

  • Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    Article  CAS  PubMed  Google Scholar 

  • Schumacher M, Sitruk-Ware R, De Nicola AF (2008) Progesterone and progestins: neuroprotection and myelin repair. Curr Opin Pharmacol 8(6):740–746

    Article  CAS  PubMed  Google Scholar 

  • Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM (2012) Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 6:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39

    Article  CAS  PubMed  Google Scholar 

  • Schwartz ES, Lee I, Chung K, Chung JM (2008) Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138(3):514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein DG (2006) Progesterone in the experimental treatment of central and peripheral nervous system injuries. Future Neurol 1(4):429–438

    Article  CAS  Google Scholar 

  • Stoffel-Wagner B (2003) Neurosteroid biosynthesis in the human brain and its clinical implications. Ann NY Acad Sci 1007:64–78

    Article  CAS  PubMed  Google Scholar 

  • Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, Wang YY, Yang YL (2013) Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J 89(1058):709–714

    Article  CAS  PubMed  Google Scholar 

  • Taleb O, Bouzobra F, Tekin-Pala H, Meyer L, Mensah-Nyagan AG, Patte-Mensah C (2017) Behavioral and electromyographic assessment of oxaliplatin-induced motor dysfunctions: evidence for a therapeutic effect of allopregnanolone. Behav Brain Res 320:440–449

    Article  CAS  PubMed  Google Scholar 

  • Taleb O, Patte-Mensah C, Meyer L, Kemmel V, Geoffroy P, Miesch M, Mensah-Nyagan AG (2018) Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone. J Neuroendocrinol 30(2):e12568

    Article  CAS  Google Scholar 

  • Thomas P (2008) Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 29(2):292–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Pang Y (2012) Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology 96(2):162–171

    Article  CAS  PubMed  Google Scholar 

  • Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after experimental acute spinal cord trauma in rats. Spine 24:2134–2138

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Pang Y, Dong J (2014) Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors. Endocrinology 155(3):1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomiyama M, Furusawa K, Kamijo M, Kimura T, Matsunaga M, Baba M (2005) Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res Mol Brain Res 136(1–2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Truini A, Cruccu G (2006) Pathophysiological mechanisms of neuropathic pain. Neurol Sci 27:179–182

    Article  Google Scholar 

  • Tsuda M (2017) P2 receptors, microglial cytokines and chemokines, and neuropathic pain. J Neurosci Res 95(6):1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M (2018) Modulation of Pain and Itch by Spinal Glia. Neurosci Bull 34(1):178–185

    Article  PubMed  Google Scholar 

  • Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K (2013) Microglial regulation of neuropathic pain. J Pharmacol Sci 121(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ultenius C, Linderoth B, Meyerson BA, Wallin J (2006) Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neurosci Lett 399(1–2):85–90

    Article  CAS  PubMed  Google Scholar 

  • Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89:9949–9953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veiga S, Leonelli E, Beelke M, Garcia-Segura LM, Melcangi RC (2006) Neuroactive steroids prevent peripheral myelin alterations induced by diabetes. Neurosci Lett 10(402):1–2

    Google Scholar 

  • Velasco R, Bruna J (2010) Chemotherapy-induced peripheral neuropathy: an unresolved issue. Neurologia 25(2):116–131

    Article  CAS  PubMed  Google Scholar 

  • Viviani B, Boraso M, Marchetti N, Marinovich M (2014) Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 43:10–20

    Article  CAS  PubMed  Google Scholar 

  • Walters ET (2014) Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 258:48–61

    Article  CAS  PubMed  Google Scholar 

  • Wei XH, Wei X, Chen FY, Zang Y, Xin WJ, Pang RP, Chen Y, Wang J, Li YY, Shen KF, Zhou LJ, Liu XG (2013) The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats. J Neurosci 33(4):1540–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Xiao WH, Bennett GJ (2012) Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153(3):704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Xiao L, Bai X, Yang SY, Li Y, Chen Y, Cui Y, Chen Y (2016) Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Neurosci Lett 634:79–86

    Article  CAS  PubMed  Google Scholar 

  • Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi B, Dardis A (2009) Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 13(9B):3786–3796

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Consejo Nacional de Investigaciones Científicas y Tecnológicas (PIP 112 20150100266), Fundación René Barón and Fundación Williams, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, and Association Ti’toine de Normandie. These funding institutions/organizations had no role in the collection, analysis, and interpretation of data, in writing the report, and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

S.L.G and A.G.M-N conceived, designed, and wrote the manuscript. L.M., M.C.R., and C.P-M designed the figures. L.M., M.C.R., O.T., M.F.C., and C.P-M revised and critically contributed to the approved final version.

Corresponding authors

Correspondence to Susana Laura González or Ayikoe Guy Mensah-Nyagan.

Ethics declarations

Conflict of interest

None to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, S.L., Meyer, L., Raggio, M.C. et al. Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective. Cell Mol Neurobiol 39, 523–537 (2019). https://doi.org/10.1007/s10571-018-0618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-018-0618-1

Keywords

Navigation