Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 6, pp 1227–1234 | Cite as

Dynamic Changes of Astrocytes and Adenosine Signaling in Rat Hippocampus in Post-status Epilepticus Model of Epileptogenesis

  • Siqi Hong
  • Tingsong Li
  • Yuanyuan Luo
  • Wenjuan Li
  • Xiaoju Tang
  • Yuanzhen Ye
  • Peng Wu
  • Qiao Hu
  • Li Cheng
  • Hengsheng Chen
  • Li Jiang
Original Research

Abstract

It is of great importance to explore the development of epileptogenesis, and the adenosine and adenosine kinase (ADK) system seems to play a key role in this process. The aim of this study is to explore the dynamic changes of astrocytes and adenosine signaling during epileptogenesis in rat hippocampus in a post-status epileptogenesis (SE) model. Rat SE models were built and killed for experiments at 1 day (acute phase of epileptogenesis), 5 days (latent phase), 4 weeks (chronic phase), and 8 weeks (late chronic phase of epileptogenesis) after SE induction. Immunofluorescence staining, high-performance liquid chromatography, and Western blotting were performed to assess changes of astrocytes, adenosine, ADK, and ADK receptors (including A1R, A2aR, A2bR, and A3R) in hippocampus. The expression level of glial fibrillary acidic protein significantly increased from latent to late chronic phase. The concentration of adenosine sharply increased in acute phase and gradually decreased in the remaining phases of post-SE, being significantly lower than in the control group in late chronic phase. Protein levels of A1R and A2aR in post-SE models increased in acute phase, whereas A2bR and A3R protein expression decreased in latent phase, chronic phase, and late chronic phase following post-SE epileptogenesis. Protein expression of ADK significantly increased during latent phase, chronic phase, and late chronic phase of post-SE epileptogenesis. In conclusion, the levels of adenosine and protein expression of A1R and A2R significantly increased during acute phase of post-SE. During the remaining phases of post-SE epileptogenesis, there was imbalance among astrocytes, adenosine, adenosine receptors, and ADK. Regulation of the ADK/adenosine system may provide potential treatment strategies for epileptogenesis.

Keywords

Astrocytes Adenosine kinase Adenosine Status epilepticus 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC grant 81371452), Natural Science Foundation of Chongqing (CSTC 2013jjB0031; CSTC 2015jcyjA10091), Research Fund for the Doctoral Program of Higher Education of China (20125503110011), and Young and Middle-Age High-Level Medical Reserved Personnel Training Project Foundation of Chongqing.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Arisi GM, Ruch M, Foresti ML, Mukherjee S, Ribak CE, Shapiro LA (2011) Astrocyte alterations in the hippocampus following pilocarpine-induced seizures in aged rats. Aging Dis 2(4):294–300PubMedPubMedCentralGoogle Scholar
  2. Binder DK, Steinhäuser C (2017) Role of astrocyte dysfunction in epilepsy. Reference module in neuroscience and biobehavioral psychology. Elsevier, Amsterdam.  https://doi.org/10.1016/B978-0-12-809324-5.00071-7 Google Scholar
  3. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Progr Neurobiol 84(3):249–262.  https://doi.org/10.1016/j.pneurobio.2007.12.002 CrossRefGoogle Scholar
  4. Boison D (2013) Role of adenosine in status epilepticus: a potential new target? Epilepsia 54(Suppl 6):20–22.  https://doi.org/10.1111/epi.12268 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boison D, Masino SA, Geiger JD (2011) Homeostatic bioenergetic network regulation - a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 6(7):713–724.  https://doi.org/10.1517/17460441.2011.575777 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157.  https://doi.org/10.1016/j.jneumeth.2008.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Diogenes MJ, Neves-Tome R, Fucile S, Martinello K, Scianni M, Theofilas P, Lopatar J, Ribeiro JA, Maggi L, Frenguelli BG, Limatola C, Boison D, Sebastiao AM (2014) Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase. Cerebral Cortex 24(1):67–80.  https://doi.org/10.1093/cercor/bhs284 CrossRefPubMedGoogle Scholar
  8. do Nascimento AL, Dos Santos NF, Campos Pelagio F, Aparecida Teixeira S, de Moraes Ferrari EA, Langone F (2012) Neuronal degeneration and gliosis time-course in the mouse hippocampal formation after pilocarpine-induced status epilepticus. Brain Res 1470:98–110.  https://doi.org/10.1016/j.brainres.2012.06.008 CrossRefPubMedGoogle Scholar
  9. Dragunow M (1991) Adenosine and seizure termination. Ann Neurol 29(5):575.  https://doi.org/10.1002/ana.410290524 CrossRefPubMedGoogle Scholar
  10. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624.  https://doi.org/10.1002/ana.410320504 CrossRefPubMedGoogle Scholar
  11. Engel J Jr (1996) Clinical evidence for the progressive nature of epilepsy. Epilepsy Res Suppl 12:9–20PubMedGoogle Scholar
  12. Gibbons MB, Smeal RM, Takahashi DK, Vargas JR, Wilcox KS (2013) Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy? Neurochem Int 63(7):660–669.  https://doi.org/10.1016/j.neuint.2012.12.008 CrossRefPubMedGoogle Scholar
  13. Giulia C, Daniela L, Giuseppe B, Jones RSG, Massimo A (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157CrossRefGoogle Scholar
  14. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta (BBA) 1808(5):1380–1399.  https://doi.org/10.1016/j.bbamem.2010.12.001 CrossRefGoogle Scholar
  15. Haut SR, Veliskova J, Moshe SL (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3(10):608–617.  https://doi.org/10.1016/s1474-4422(04)00881-6 CrossRefPubMedGoogle Scholar
  16. Huicong K, Zheng X, Furong W, Zhouping T, Feng X, Qi H, Xiaoyan L, Xiaojiang H, Na Z, Ke X, Zheng Z, Suiqiang Z (2013) The imbalanced expression of adenosine receptors in an epilepsy model corrected using targeted mesenchymal stem cell transplantation. Mol Neurobiol 48(3):921–930.  https://doi.org/10.1007/s12035-013-8480-0 CrossRefPubMedGoogle Scholar
  17. Kovacs Z, Kekesi KA, Juhasz G, Dobolyi A (2014) The antiepileptic potential of nucleosides. Curr Med Chem 21(6):788–821CrossRefPubMedGoogle Scholar
  18. Lauritzen F, Heuser K, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH (2012a) Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 60(7):1172–1181.  https://doi.org/10.1002/glia.22344 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lauritzen F, Heuser K, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH (2012b) Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 60(7):1172CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lemos T, Cavalheiro EA (1995) Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 102(3):423–428CrossRefPubMedGoogle Scholar
  21. Luo Y, Hu Q, Zhang Q, Hong S, Tang X, Chen L, Jiang L (2015a) Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res 1627:154CrossRefPubMedGoogle Scholar
  22. Luo Y, Hu Q, Zhang Q, Hong S, Tang X, Cheng L, Jiang L (2015b) Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res 1627:154CrossRefPubMedGoogle Scholar
  23. Mazzuferi M, Palma E, Martinello K, Maiolino F, Roseti C, Fucile S, Fabene PF, Schio F, Pellitteri M, Sperk G (2010) Enhancement of GABA current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad Sci USA 107(7):3180–3185CrossRefPubMedGoogle Scholar
  24. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762.  https://doi.org/10.1016/j.neurobiolaging.2007.04.013 CrossRefPubMedGoogle Scholar
  25. Rebola N, Pinheiro PC, Oliveira CR, Malva JO, Cunha RA (2003) Subcellular localization of adenosine A(1) receptors in nerve terminals and synapses of the rat hippocampus. Brain Res 987(1):49–58CrossRefPubMedGoogle Scholar
  26. Sachdeva S, Gupta M (2013) Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm J 21(3):245–253.  https://doi.org/10.1016/j.jsps.2012.05.011 CrossRefPubMedGoogle Scholar
  27. Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D (2014) Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice. J Neurosurg 120(3):628–638.  https://doi.org/10.3171/2013.10.jns13918 CrossRefPubMedGoogle Scholar
  28. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9(3):315–335CrossRefPubMedGoogle Scholar
  29. Ye Y, Xiong J, Hu J, Kong M, Cheng L, Chen H, Li T, Jiang L (2013) Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe. epilepsy: A histopathological and stereological investigation. Brain Res 1522(30):76–87CrossRefPubMedGoogle Scholar
  30. Yuzlenko O, Kiec-Kononowicz K (2006) Potent adenosine A1 and A2A receptors antagonists: recent developments. Curr Med Chem 13(30):3609–3625CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Siqi Hong
    • 1
    • 2
  • Tingsong Li
    • 1
    • 2
  • Yuanyuan Luo
    • 1
  • Wenjuan Li
    • 1
  • Xiaoju Tang
    • 1
  • Yuanzhen Ye
    • 1
  • Peng Wu
    • 1
    • 2
  • Qiao Hu
    • 1
  • Li Cheng
    • 1
  • Hengsheng Chen
    • 1
  • Li Jiang
    • 1
    • 2
  1. 1.Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of NeurologyChildren’s Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations