Advertisement

Cellular and Molecular Neurobiology

, Volume 38, Issue 4, pp 861–868 | Cite as

Downregulation of Survivin Gene Expression Affects Ionizing Radiation Resistance of Human T98 Glioma Cells

  • Jicheng Li
  • Yong Han
  • Dai Zhou
  • Youxin Zhou
  • Ming Ye
  • Hangzhou Wang
  • Ziwei Du
Original Research

Abstract

Survivin is a tumor-associated gene, which has been detected in a wide variety of human tumors. Previous research has shown that Survivin can affect hepatoma carcinoma cell radiosensitivity. However, little is known about the role of Survivin in ionizing radiation resistance in glioma cells. In this study, we aimed to identify the effects of Survivin on ionizing radiation resistance in glioma cell line T98. Our results showed that downregulation of Survivin gene expression and ionizing irradiation could both inhibit T98 cell proliferation by assays in vitro including CCK-8 and immunohistochemistry. The inhibitory effect of downregulation of Survivin combined with irradiation was the most significant compared with other groups. Results of Western blotting and flow cytometric analysis also showed that downregulation of Survivin combined with the irradiation group achieved the highest apoptosis rate. Experimental results in vivo by intracranial implanting into nude mice were consistent with those in vitro. These findings indicated that ionizing radiation resistance of human T98 glioma cells can be inhibited effectively after Survivin gene silencing.

Keywords

Glioma Survivin Ionizing radiation Proliferation Apoptosis 

Notes

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Akleyev A, Deltour I, Krestinina L, Sokolnikov M, Tsareva Y, Tolstykh E, Schuz J (2016) Incidence and mortality of solid cancers in people exposed in utero to ionizing radiation: pooled analyses of two cohorts from the southern Urals, Russia. PLoS ONE 11(8):e0160372. doi: 10.1371/journal.pone.0160372 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen AM, Ben-Ami M, Reshef A, Steinmetz A, Kundel Y, Inbar E, Djaldetti R, Davidson T, Fenig E, Ziv I (2012) Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with (1)(8)F-ML-10. Eur J Nucl Med Mol Imaging 39(9):1400–1408. doi: 10.1007/s00259-012-2150-8 CrossRefPubMedGoogle Scholar
  3. Altieri DC (2004) Molecular circuits of apoptosis regulation and cell division control: the Survivin paradigm. J Cell Biochem 92(4):656–663. doi: 10.1002/jcb.20140 CrossRefPubMedGoogle Scholar
  4. Asanuma K, Moriai R, Yajima T, Yagihashi A, Yamada M, Kobayashi D, Watanabe N (2000) Survivin as a radioresistance factor in pancreatic cancer. Jpn J Cancer Res 91(11):1204–1209CrossRefPubMedGoogle Scholar
  5. Basso E, Regazzo G, Fiore M, Palma V, Traversi G, Testa A, Degrassi F, Cozzi R (2016) Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro. Mutat Res Genet Toxicol Environ Mutagen 806:40–46. doi: 10.1016/j.mrgentox.2016.07.005 CrossRefPubMedGoogle Scholar
  6. Brun SN, Markant SL, Esparza LA, Garcia G, Terry D, Huang JM, Pavlyukov MS, Li XN, Grant GA, Crawford JR, Levy ML, Conway EM, Smith LH, Nakano I, Berezov A, Greene MI, Wang Q, Wechsler-Reya RJ (2015) Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma. Oncogene 34(29):3770–3779. doi: 10.1038/onc.2014.304 CrossRefPubMedGoogle Scholar
  7. Challapalli A, Kenny LM, Hallett WA, Kozlowski K, Tomasi G, Gudi M, Al-Nahhas A, Coombes RC, Aboagye EO (2013) 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med 54(9):1551–1556. doi: 10.2967/jnumed.112.118760 CrossRefPubMedGoogle Scholar
  8. Chen X, Duan N, Zhang C, Zhang W (2016) Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer 7(3):314–323. doi: 10.7150/jca.13332 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dahan P, Martinez Gala J, Delmas C, Monferran S, Malric L, Zentkowski D, Lubrano V, Toulas C, Cohen-Jonathan Moyal E, Lemarie A (2014) Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through Survivin: possible involvement in radioresistance. Cell Death Dis 5:e1543. doi: 10.1038/cddis.2014.509 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Debeb BG, Smith DL, Li L, Larson R, Xu W, Woodward WA (2015) Differential effect of phosphorylation-defective Survivin on radiation response in estrogen receptor-positive and -negative breast cancer. PLoS ONE 10(3):e0120719. doi: 10.1371/journal.pone.0120719 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Han Y, Zhou L, Wu T, Huang Y, Cheng Z, Li X, Sun T, Zhou Y, Du Z (2016) Downregulation of lncRNA-MALAT1 affects proliferation and the expression of stemness markers in glioma stem cell line SHG139S. Cell Mol Neurobiol 36(7):1097–1107. doi: 10.1007/s10571-015-0303-6 CrossRefPubMedGoogle Scholar
  12. Honda N, Yagi K, Ding GR, Miyakoshi J (2002) Radiosensitization by overexpression of the nonphosphorylation form of IkappaB-alpha in human glioma cells. J Radiat Res 43(3):283–292CrossRefPubMedGoogle Scholar
  13. Ivanov VN, Hei TK (2014) Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis 19(12):1736–1754. doi: 10.1007/s10495-014-1040-x CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim KU, Xiao J, Ni HT, Cho KH, Spellman SR, Low WC, Hall WA (2003) Changes in expression of transferrin, insulin-like growth factor 1, and interleukin 4 receptors after irradiation of cells of primary malignant brain tumor cell lines. Radiat Res 160(2):224–231CrossRefPubMedGoogle Scholar
  15. Kuhnt T, Stang A, Wienke A, Vordermark D, Schweyen R, Hey J (2016) Potential risk factors for jaw osteoradionecrosis after radiotherapy for head and neck cancer. Radiat Oncol 11(1):101. doi: 10.1186/s13014-016-0679-6 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Liu HY, Yu X, Liu H, Wu D, She JX (2016) Co-targeting EGFR and Survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer. Sci Rep 6:30346. doi: 10.1038/srep30346 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ma C, Lu B, Sun E (2016) Clinicopathological and prognostic significance of Survivin expression in renal cancer patients: a meta-analysis. Postgrad Med J. doi: 10.1136/postgradmedj-2016-134105 Google Scholar
  18. Mellai M, Caldera V, Patrucco A, Annovazzi L, Schiffer D (2008) Survivin expression in glioblastomas correlates with proliferation, but not with apoptosis. Anticancer Res 28(1a):109–118PubMedGoogle Scholar
  19. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35(Suppl):S78–S103. doi: 10.1016/j.semcancer.2015.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Naoum GE, Zhu ZB, Buchsbaum DJ, Curiel DT, Arafat WO (2017) Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs. Clin Transl Med 6(1):11. doi: 10.1186/s40169-017-0140-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sinha S, Ghildiyal R, Mehta VS, Sen E (2013) ATM-NFkappaB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNFalpha. Cell Death Dis 4:e615. doi: 10.1038/cddis.2013.128 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii93–iii101. doi: 10.1093/annonc/mdu050 CrossRefPubMedGoogle Scholar
  23. Wang J, Li F, Dong Y, Song Y, Yuan Z (2016) Clinical study on the influence of motion and other factors on stereotactic radiotherapy in the treatment of adrenal gland tumor. Onco Targets Ther 9:4295–4299. doi: 10.2147/ott.s107106 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi: 10.1056/NEJMra0708126 CrossRefPubMedGoogle Scholar
  25. Zhou J, Pang H, Li W, Liu Q, Xu L, Liu Q, Liu Y (2016) Effects of Lycium barbarum polysaccharides on apoptosis, cellular adhesion, and oxidative damage in bone marrow mononuclear cells of mice exposed to ionizing radiation injury. Biomed Res Int 2016:4147879. doi: 10.1155/2016/4147879 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of NeurosurgeryChildren’s Hospital of Soochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations