Cellular and Molecular Neurobiology

, Volume 38, Issue 4, pp 783–795 | Cite as

Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis

  • Alexandre Vallée
  • Jean-Noël Vallée
  • Rémy Guillevin
  • Yves Lecarpentier
Review Paper


Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.


Canonical WNT/beta-catenin pathway PPAR gamma Multiple sclerosis PI3K/Akt pathway Demyelination Remyelination Inflammation TCF7L2 



Adenomatous polyposis coli






Glycogen synthase kinase-3beta

LRP 5/6

Low-density lipoprotein receptor-related protein 5/6


Phosphatidylinositol 3-kinase-protein kinase B

PPAR gamma

Peroxisome proliferator-activated receptor gamma


T cell factor/lymphoid enhancer factor



We would like to thank Dr Christophe Locher, President of the “Fédération de la Recherche Clinique du Grand Hôpital de l’Est Francilien,” and Mr. Vincent Gobert, Administrative Manager of the Clinical Research Center, Meaux Hospital, Meaux, France, for their valuable support in making the necessary research facilities available for this study.

Author Contributions

All authors listed, have made substantial, direct, and intellectual contribution to the work, and approved it for publication. AV, JNV, RG, and YL have contributed to this review.

Compliance with Ethical Standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial, financial relationship, or non-financial interest that could be construed as a potential conflict of interest.


  1. Aberle H, Bauer A, Stappert J et al (1997) β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J 16:3797–3804. doi: 10.1093/emboj/16.13.3797 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566. doi: 10.1038/nm.3159 PubMedCrossRefGoogle Scholar
  3. Ajmone-Cat MA, D’Urso MC, di Blasio G et al (2016) Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain Behav Immun 55:225–235. doi: 10.1016/j.bbi.2015.11.012 PubMedCrossRefGoogle Scholar
  4. Albanese C, Wu K, D’Amico M et al (2003) IKKalpha regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol Biol Cell 14:585–599. doi: 10.1091/mbc.02-06-0101 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Al-Harthi L (2012) Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 7:725–730. doi: 10.1007/s11481-012-9412-x PubMedPubMedCentralCrossRefGoogle Scholar
  6. Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. doi: 10.1038/nrm2717 PubMedGoogle Scholar
  7. Anson M, Crain-Denoyelle A-M, Baud V et al (2012) Oncogenic β-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. J Clin Investig 122:586–599. doi: 10.1172/JCI43937 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Back SA, Rosenberg PA (2014) Pathophysiology of glia in perinatal white matter injury. Glia 62:1790–1815. doi: 10.1002/glia.22658 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Benedusi V, Martorana F, Brambilla L et al (2012) The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis. J Biol Chem 287:35899–35911. doi: 10.1074/jbc.M112.366419 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12:715–723. doi: 10.1038/ni.2060 PubMedCrossRefGoogle Scholar
  11. Bernardo A, Minghetti L (2008) Regulation of glial cell functions by PPAR-gamma natural and synthetic agonists. PPAR Res 2008:864140. doi: 10.1155/2008/864140 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beurel E (2011) Regulation by glycogen synthase kinase-3 of inflammation and T cells in CNS diseases. Front Mol Neurosci 4:18. doi: 10.3389/fnmol.2011.00018 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Billiards SS, Haynes RL, Folkerth RD et al (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18:153–163. doi: 10.1111/j.1750-3639.2007.00107.x PubMedPubMedCentralCrossRefGoogle Scholar
  14. Braissant O, Foufelle F, Scotto C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366. doi: 10.1210/endo.137.1.8536636 PubMedCrossRefGoogle Scholar
  15. Brazil DP, Yang Z-Z, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242. doi: 10.1016/j.tibs.2004.03.006 PubMedCrossRefGoogle Scholar
  16. Buser JR, Maire J, Riddle A et al (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93–109. doi: 10.1002/ana.22627 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Buss H, Dörrie A, Schmitz ML et al (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279:49571–49574. doi: 10.1074/jbc.C400442200 PubMedCrossRefGoogle Scholar
  18. Cabrero A, Laguna JC, Vázquez M (2002) Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targets Inflamm Allergy 1:243–248PubMedCrossRefGoogle Scholar
  19. Chan CB, Chen Y, Liu X et al (2012) Essential role of PIKE GTPases in neuronal protection against excitotoxic insults. Adv Biol Regul 52:66–76. doi: 10.1016/j.advenzreg.2011.09.012 PubMedCrossRefGoogle Scholar
  20. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173. doi: 10.1056/NEJMoa010994 PubMedCrossRefGoogle Scholar
  21. Chen J, Alberts I, Li X (2014) Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int J Dev Neurosci Off J Int Soc Dev Neurosci 35:35–41. doi: 10.1016/j.ijdevneu.2014.03.006 CrossRefGoogle Scholar
  22. Chew L-J, Shen W, Ming X et al (2011) SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci Off J Soc Neurosci 31:13921–13935. doi: 10.1523/JNEUROSCI.3343-11.2011 CrossRefGoogle Scholar
  23. Cho HH, Song JS, Yu JM et al (2008a) Differential effect of NF-kappaB activity on beta-catenin/Tcf pathway in various cancer cells. FEBS Lett 582:616–622. doi: 10.1016/j.febslet.2008.01.029 PubMedCrossRefGoogle Scholar
  24. Cho HH, Hye JJ, Song JS et al (2008b) Crossregulation of beta-catenin/Tcf pathway by NF-kappaB is mediated by lzts2 in human adipose tissue-derived mesenchymal stem cells. Biochim Biophys Acta 1783:419–428. doi: 10.1016/j.bbamcr.2007.08.005 CrossRefGoogle Scholar
  25. Choi YS, Hur J, Jeong S (2007) Beta-catenin binds to the downstream region and regulates the expression C-reactive protein gene. Nucleic Acids Res 35:5511–5519. doi: 10.1093/nar/gkm547 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ciuffreda L, Di Sanza C, Incani UC, Milella M (2010) The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets 10:484–495PubMedCrossRefGoogle Scholar
  27. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127:469–480. doi: 10.1016/j.cell.2006.10.018 PubMedCrossRefGoogle Scholar
  28. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205. doi: 10.1016/j.cell.2012.05.012 PubMedCrossRefGoogle Scholar
  29. Crawford DK, Mangiardi M, Song B et al (2010) Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination. Brain J Neurol 133:2999–3016. doi: 10.1093/brain/awq237 CrossRefGoogle Scholar
  30. Crawford AH, Chambers C, Franklin RJM (2013) Remyelination: the true regeneration of the central nervous system. J Comp Pathol 149:242–254. doi: 10.1016/j.jcpa.2013.05.004 PubMedCrossRefGoogle Scholar
  31. Cummins EP, Berra E, Comerford KM et al (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103:18154–18159. doi: 10.1073/pnas.0602235103 PubMedPubMedCentralCrossRefGoogle Scholar
  32. De Nuccio C, Bernardo A, Cruciani C et al (2015) Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: effects on mitochondrial functions and differentiation. Exp Neurol 271:506–514. doi: 10.1016/j.expneurol.2015.07.014 PubMedCrossRefGoogle Scholar
  33. Deng J, Miller SA, Wang H-Y et al (2002) beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2:323–334PubMedCrossRefGoogle Scholar
  34. Deng J, Xia W, Miller SA et al (2004) Crossregulation of NF-kappaB by the APC/GSK-3beta/beta-catenin pathway. Mol Carcinog 39:139–146. doi: 10.1002/mc.10169 PubMedCrossRefGoogle Scholar
  35. Diab A, Deng C, Smith JD et al (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 168:2508–2515PubMedCrossRefGoogle Scholar
  36. Diab A, Hussain RZ, Lovett-Racke AE et al (2004) Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol 148:116–126. doi: 10.1016/j.jneuroim.2003.11.010 PubMedCrossRefGoogle Scholar
  37. Drew PD, Storer PD, Xu J, Chavis JA (2005) Hormone regulation of microglial cell activation: relevance to multiple sclerosis. Brain Res Brain Res Rev 48:322–327. doi: 10.1016/j.brainresrev.2004.12.020 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Drew PD, Xu J, Racke MK (2008) PPAR-gamma: therapeutic potential for multiple sclerosis. PPAR Res 2008:627463. doi: 10.1155/2008/627463 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Drygiannakis I, Valatas V, Sfakianaki O et al (2013) Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis. J Crohns Colitis 7:286–300. doi: 10.1016/j.crohns.2012.04.008 PubMedCrossRefGoogle Scholar
  40. Du Q, Geller DA (2010) Cross-regulation between Wnt and NF-κB signaling pathways. For Immunopathol Dis Ther 1:155–181. doi: 10.1615/ForumImmunDisTher.v1.i3 CrossRefGoogle Scholar
  41. Dunn SE, Ousman SS, Sobel RA et al (2007) Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 204:321–330. doi: 10.1084/jem.20061839 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dunn SE, Bhat R, Straus DS et al (2010) Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity. J Exp Med 207:1599–1608. doi: 10.1084/jem.20091663 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Duvanel CB, Honegger P, Pershadsingh H et al (2003) Inhibition of glial cell proinflammatory activities by peroxisome proliferator-activated receptor gamma agonist confers partial protection during antimyelin oligodendrocyte glycoprotein demyelination in vitro. J Neurosci Res 71:246–255. doi: 10.1002/jnr.10471 PubMedCrossRefGoogle Scholar
  44. El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145. doi: 10.3389/fnins.2014.00145 PubMedPubMedCentralGoogle Scholar
  45. Elbrecht A, Chen Y, Cullinan CA et al (1996) Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 224:431–437PubMedCrossRefGoogle Scholar
  46. Fajas L, Auboeuf D, Raspé E et al (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272:18779–18789PubMedCrossRefGoogle Scholar
  47. Fancy SPJ, Baranzini SE, Zhao C et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. doi: 10.1101/gad.1806309 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fancy SPJ, Kotter MR, Harrington EP et al (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225:18–23. doi: 10.1016/j.expneurol.2009.12.020 PubMedCrossRefGoogle Scholar
  49. Fancy SPJ, Harrington EP, Yuen TJ et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016. doi: 10.1038/nn.2855 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Farmer SR (2005) Regulation of PPARgamma activity during adipogenesis. Int J Obes 29(Suppl 1):S13–S16. doi: 10.1038/sj.ijo.0802907 CrossRefGoogle Scholar
  51. Feigenson K, Reid M, See J et al (2009) Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42:255–265. doi: 10.1016/j.mcn.2009.07.010 PubMedCrossRefGoogle Scholar
  52. Feinstein DL, Galea E, Gavrilyuk V et al (2002) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51:694–702. doi: 10.1002/ana.10206 PubMedCrossRefGoogle Scholar
  53. Franklin RJM (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714. doi: 10.1038/nrn917 PubMedCrossRefGoogle Scholar
  54. Franklin RJM, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855. doi: 10.1038/nrn2480 PubMedCrossRefGoogle Scholar
  55. Franklin RJM, Goldman SA (2015) Glia disease and repair-remyelination. Cold Spring Harb Perspect Biol 7:a020594. doi: 10.1101/cshperspect.a020594 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fu H, Cai J, Clevers H et al (2009) A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci Off J Soc Neurosci 29:11399–11408. doi: 10.1523/JNEUROSCI.0160-09.2009 CrossRefGoogle Scholar
  57. Fu H, Kesari S, Cai J (2012) Tcf7l2 is tightly controlled during myelin formation. Cell Mol Neurobiol 32:345–352. doi: 10.1007/s10571-011-9778-y PubMedCrossRefGoogle Scholar
  58. Gaesser JM, Fyffe-Maricich SL (2016) Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 283:501–511. doi: 10.1016/j.expneurol.2016.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Galuppo M, Giacoppo S, De Nicola GR et al (2014) Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 95:160–174. doi: 10.1016/j.fitote.2014.03.018 PubMedCrossRefGoogle Scholar
  60. Gebhardt R, Hovhannisyan A (2010) Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn Off Publ Am Assoc Anat 239:45–55. doi: 10.1002/dvdy.22041 Google Scholar
  61. Giacoppo S, Galuppo M, Montaut S et al (2015) An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 106:12–21. doi: 10.1016/j.fitote.2015.08.001 PubMedCrossRefGoogle Scholar
  62. Giacoppo S, Soundara Rajan T, De Nicola GR et al (2016) Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis. Drug Des Devel Ther 10:3291–3304. doi: 10.2147/DDDT.S110514 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Glass CK, Saijo K, Winner B et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. doi: 10.1016/j.cell.2010.02.016 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Godin JD, Poizat G, Hickey MA et al (2010) Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington’s disease. EMBO J 29:2433–2445. doi: 10.1038/emboj.2010.117 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Goebbels S, Oltrogge JH, Kemper R et al (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci Off J Soc Neurosci 30:8953–8964. doi: 10.1523/JNEUROSCI.0219-10.2010 CrossRefGoogle Scholar
  66. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407. doi: 10.1038/nri2550 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Guo F, Lang J, Sohn J et al (2015) Canonical Wnt signaling in the oligodendroglial lineage–puzzles remain. Glia 63:1671–1693. doi: 10.1002/glia.22813 PubMedCrossRefGoogle Scholar
  68. Hagemeier K, Brück W, Kuhlmann T (2012) Multiple sclerosis—remyelination failure as a cause of disease progression. Histol Histopathol 27:277–287. doi: 10.14670/HH-27.277 PubMedGoogle Scholar
  69. Hammond E, Lang J, Maeda Y et al (2015) The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling. J Neurosci Off J Soc Neurosci 35:5007–5022. doi: 10.1523/JNEUROSCI.4787-14.2015 CrossRefGoogle Scholar
  70. Harrington EP, Zhao C, Fancy SPJ et al (2010) Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann Neurol 68:703–716. doi: 10.1002/ana.22090 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701. doi: 10.1016/j.cellsig.2014.08.019 PubMedCrossRefGoogle Scholar
  72. Hoeflich KP, Luo J, Rubie EA et al (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86–90. doi: 10.1038/35017574 PubMedCrossRefGoogle Scholar
  73. Hu Y, Liu Z, Ye K (2005) Phosphoinositol lipids bind to phosphatidylinositol 3 (PI3)-kinase enhancer GTPase and mediate its stimulatory effect on PI3-kinase and Akt signalings. Proc Natl Acad Sci USA 102:16853–16858. doi: 10.1073/pnas.0507365102 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Huang JK, Jarjour AA, Nait Oumesmar B et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14:45–53. doi: 10.1038/nn.2702 PubMedCrossRefGoogle Scholar
  75. Huang J, Nguyen-McCarty M, Hexner EO et al (2012) Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 18:1778–1785. doi: 10.1038/nm.2984 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hucke S, Floßdorf J, Grützke B et al (2012) Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor γ. Brain J Neurol 135:1586–1605. doi: 10.1093/brain/aws058 CrossRefGoogle Scholar
  77. Ishii A, Fyffe-Maricich SL, Furusho M et al (2012) ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci Off J Soc Neurosci 32:8855–8864. doi: 10.1523/JNEUROSCI.0137-12.2012 CrossRefGoogle Scholar
  78. Jadidi-Niaragh F, Mirshafiey A (2011) Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 74:1–13. doi: 10.1111/j.1365-3083.2011.02536.x PubMedCrossRefGoogle Scholar
  79. Jansson EA, Are A, Greicius G et al (2005) The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. Proc Natl Acad Sci USA 102:1460–1465. doi: 10.1073/pnas.0405928102 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jeon K-I, Kulkarni A, Woeller CF et al (2014) Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation. Am J Pathol 184:1429–1445. doi: 10.1016/j.ajpath.2014.01.026 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jia D, Yang W, Li L et al (2015) β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ 22:298–310. doi: 10.1038/cdd.2014.145 PubMedCrossRefGoogle Scholar
  82. Kaiser CC, Shukla DK, Stebbins GT et al (2009) A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis. J Neuroimmunol 211:124–130. doi: 10.1016/j.jneuroim.2009.04.011 PubMedCrossRefGoogle Scholar
  83. Kam Y, Quaranta V (2009) Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PLoS ONE 4:e4580. doi: 10.1371/journal.pone.0004580 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kanakasabai S, Pestereva E, Chearwae W et al (2012) PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS ONE 7:e50500. doi: 10.1371/journal.pone.0050500 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141. doi: 10.1101/cshperspect.a000141 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13:460–469. doi: 10.1016/j.molmed.2007.09.002 PubMedCrossRefGoogle Scholar
  87. Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161. doi: 10.1136/adc.2006.108837 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kiguchi N, Kobayashi Y, Kishioka S (2012) Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 12:55–61. doi: 10.1016/j.coph.2011.10.007 PubMedCrossRefGoogle Scholar
  89. Klotz L, Schmidt M, Giese T et al (2005) Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 175:4948–4955PubMedCrossRefGoogle Scholar
  90. Klotz L, Diehl L, Dani I et al (2007) Brain endothelial PPARgamma controls inflammation-induced CD4 + T cell adhesion and transmigration in vitro. J Neuroimmunol 190:34–43. doi: 10.1016/j.jneuroim.2007.07.017 PubMedCrossRefGoogle Scholar
  91. Klotz L, Burgdorf S, Dani I et al (2009) The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206:2079–2089. doi: 10.1084/jem.20082771 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kuhlmann T, Miron V, Cui Q et al (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain J Neurol 131:1749–1758. doi: 10.1093/brain/awn096 CrossRefGoogle Scholar
  93. Kumar S, Patel R, Moore S et al (2013) Estrogen receptor β ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 56:131–144. doi: 10.1016/j.nbd.2013.04.005 PubMedCrossRefGoogle Scholar
  94. Kumar V, Mundra V, Mahato RI (2014) Nanomedicines of Hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis. Pharm Res 31:1158–1169. doi: 10.1007/s11095-013-1239-5 PubMedCrossRefGoogle Scholar
  95. Kuphal S, Poser I, Jobin C et al (2004) Loss of E-cadherin leads to upregulation of NFkappaB activity in malignant melanoma. Oncogene 23:8509–8519. doi: 10.1038/sj.onc.1207831 PubMedCrossRefGoogle Scholar
  96. Lamberti C, Lin KM, Yamamoto Y et al (2001) Regulation of beta-catenin function by the IkappaB kinases. J Biol Chem 276:42276–42286. doi: 10.1074/jbc.M104227200 PubMedCrossRefGoogle Scholar
  97. Lecarpentier Y, Vallée A (2016) Opposite interplay between PPAR gamma and canonical Wnt/beta-catenin pathway in amyotrophic lateral sclerosis. Front Neurol 7:100. doi: 10.3389/fneur.2016.00100 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lecarpentier Y, Claes V, Duthoit G, Hébert J-L (2014) Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 5:429. doi: 10.3389/fphys.2014.00429 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lecarpentier Y, Claes V, Vallée A, Hébert J-L (2017a) Interactions between PPAR gamma and the canonical Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res 2017:1–9. doi: 10.1155/2017/5879090 CrossRefGoogle Scholar
  100. Lecarpentier Y, Claes V, Vallée A, Hébert J-L (2017b) Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med 6:14. doi: 10.1186/s40169-017-0144-7 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lee HK, Deneen B (2012) Daam2 is required for dorsal patterning via modulation of canonical Wnt signaling in the developing spinal cord. Dev Cell 22:183–196. doi: 10.1016/j.devcel.2011.10.025 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lee Y, Kim SH, Lee YJ et al (2013) Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci CMLS 70:3959–3971. doi: 10.1007/s00018-013-1363-8 PubMedCrossRefGoogle Scholar
  103. Lee HK, Chaboub LS, Zhu W et al (2015a) Daam2-PIP5 K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron 85:1227–1243. doi: 10.1016/j.neuron.2015.02.024 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lee HK, Laug D, Zhu W et al (2015b) Apcdd1 stimulates oligodendrocyte differentiation after white matter injury. Glia 63:1840–1849. doi: 10.1002/glia.22848 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253–263. doi: 10.1002/glia.20928 PubMedGoogle Scholar
  106. Lehwald N, Tao G-Z, Jang KY et al (2012) β-Catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology 143:754–764. doi: 10.1053/j.gastro.2012.05.048 PubMedCrossRefGoogle Scholar
  107. Li Q, Yan Z, Li F et al (2012) The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells. Nanotechnology 23:265101. doi: 10.1088/0957-4484/23/26/265101 PubMedCrossRefGoogle Scholar
  108. Li D, Beisswenger C, Herr C et al (2014) Myeloid cell RelA/p65 promotes lung cancer proliferation through Wnt/β-catenin signaling in murine and human tumor cells. Oncogene 33:1239–1248. doi: 10.1038/onc.2013.75 PubMedCrossRefGoogle Scholar
  109. Liu J, Farmer SR (2004) Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J Biol Chem 279:45020–45027. doi: 10.1074/jbc.M407050200 PubMedCrossRefGoogle Scholar
  110. Liu Z, Habener JF (2009) Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia 52:1589–1598. doi: 10.1007/s00125-009-1384-x PubMedPubMedCentralCrossRefGoogle Scholar
  111. Liu J, Wang H, Zuo Y, Farmer SR (2006) Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol 26:5827–5837. doi: 10.1128/MCB.00441-06 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Liu R, Tian B, Gearing M et al (2008) Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci USA 105:7570–7575. doi: 10.1073/pnas.0712306105 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508. doi: 10.1038/nm0502-500 PubMedCrossRefGoogle Scholar
  114. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi: 10.1146/annurev.cellbio.20.010403.113126 PubMedCrossRefGoogle Scholar
  115. Lu D, Carson DA (2010) Repression of beta-catenin signaling by PPAR gamma ligands. Eur J Pharmacol 636:198–202. doi: 10.1016/j.ejphar.2010.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Luna-Medina R, Cortes-Canteli M, Alonso M et al (2005) Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation. J Biol Chem 280:21453–21462. doi: 10.1074/jbc.M414390200 PubMedCrossRefGoogle Scholar
  117. Luo F, Burke K, Kantor C et al (2014) Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. J Neurosci Off J Soc Neurosci 34:10415–10429. doi: 10.1523/JNEUROSCI.0710-14.2014 CrossRefGoogle Scholar
  118. Lürbke A, Hagemeier K, Cui Q-L et al (2013) Limited TCF7L2 expression in MS lesions. PLoS ONE 8:e72822. doi: 10.1371/journal.pone.0072822 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ma B, Hottiger MO (2016) Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 7:378. doi: 10.3389/fimmu.2016.00378 PubMedPubMedCentralGoogle Scholar
  120. Ma J, Wang R, Fang X et al (2011) Critical role of TCF-1 in repression of the IL-17 gene. PLoS ONE 6:e24768. doi: 10.1371/journal.pone.0024768 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ma B, Zhong L, van Blitterswijk CA et al (2013) T cell factor 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor κB signaling. J Biol Chem 288:17552–17558. doi: 10.1074/jbc.M113.453985 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Moore SM, Khalaj AJ, Kumar S et al (2014) Multiple functional therapeutic effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple sclerosis. Proc Natl Acad Sci USA 111:18061–18066. doi: 10.1073/pnas.1411294111 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci Off J Soc Neurosci 29:6860–6870. doi: 10.1523/JNEUROSCI.0232-09.2009 CrossRefGoogle Scholar
  124. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3:59–70. doi: 10.1038/sj.gene.6363832 PubMedCrossRefGoogle Scholar
  125. Negrotto L, Farez MF, Correale J (2016) Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol 73:520–528. doi: 10.1001/jamaneurol.2015.4807 PubMedCrossRefGoogle Scholar
  126. Nejak-Bowen K, Kikuchi A, Monga SPS (2013) Beta-catenin-NF-κB interactions in murine hepatocytes: a complex to die for. Hepatology 57:763–774. doi: 10.1002/hep.26042 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Niino M, Iwabuchi K, Kikuchi S et al (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-gamma. J Neuroimmunol 116:40–48PubMedCrossRefGoogle Scholar
  128. Norrmén C, Suter U (2013) Akt/mTOR signalling in myelination. Biochem Soc Trans 41:944–950. doi: 10.1042/BST20130046 PubMedCrossRefGoogle Scholar
  129. Noubissi FK, Elcheva I, Bhatia N et al (2006) CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 441:898–901. doi: 10.1038/nature04839 PubMedCrossRefGoogle Scholar
  130. Oguma K, Oshima H, Aoki M et al (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27:1671–1681. doi: 10.1038/emboj.2008.105 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Padden M, Leech S, Craig B et al (2007) Differences in expression of junctional adhesion molecule-A and beta-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology. Acta Neuropathol 113:177–186. doi: 10.1007/s00401-006-0145-x PubMedCrossRefGoogle Scholar
  132. Padilla J, Leung E, Phipps RP (2002) Human B lymphocytes and B lymphomas express PPAR-gamma and are killed by PPAR-gamma agonists. Clin Immunol 103:22–33. doi: 10.1006/clim.2001.5181 PubMedCrossRefGoogle Scholar
  133. Paintlia AS, Paintlia MK, Singh I, Singh AK (2006) IL-4-induced peroxisome proliferator-activated receptor gamma activation inhibits NF-kappaB trans activation in central nervous system (CNS) glial cells and protects oligodendrocyte progenitors under neuroinflammatory disease conditions: implication for CNS-demyelinating diseases. J Immunol 176:4385–4398PubMedCrossRefGoogle Scholar
  134. Paintlia AS, Paintlia MK, Singh AK et al (2010) Activation of PPAR-γ and PTEN cascade participates in lovastatin-mediated accelerated differentiation of oligodendrocyte progenitor cells. Glia 58:1669–1685. doi: 10.1002/glia.21039 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Park KS, Lee RD, Kang S-K et al (2004) Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res 297:424–433. doi: 10.1016/j.yexcr.2004.03.034 PubMedCrossRefGoogle Scholar
  136. Park J-I, Kim SW, Lyons JP et al (2005) Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell 8:843–854. doi: 10.1016/j.devcel.2005.04.010 PubMedCrossRefGoogle Scholar
  137. Pasparakis M (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788. doi: 10.1038/nri2655 PubMedCrossRefGoogle Scholar
  138. Prokhortchouk A, Hendrich B, Jørgensen H et al (2001) The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 15:1613–1618. doi: 10.1101/gad.198501 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Qian J, Niu M, Zhai X et al (2012) β-Catenin pathway is required for TGF-β1 inhibition of PPARγ expression in cultured hepatic stellate cells. Pharmacol Res 66:219–225. doi: 10.1016/j.phrs.2012.06.003 PubMedCrossRefGoogle Scholar
  140. Raikwar HP, Muthian G, Rajasingh J et al (2005) PPARgamma antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. J Neuroimmunol 167:99–107. doi: 10.1016/j.jneuroim.2005.06.026 PubMedCrossRefGoogle Scholar
  141. Raikwar HP, Muthian G, Rajasingh J et al (2006) PPARgamma antagonists reverse the inhibition of neural antigen-specific Th1 response and experimental allergic encephalomyelitis by ciglitazone and 15-deoxy-Delta 12,14-prostaglandin J2. J Neuroimmunol 178:76–86. doi: 10.1016/j.jneuroim.2006.05.013 PubMedCrossRefGoogle Scholar
  142. Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta 1771:926–935. doi: 10.1016/j.bbalip.2007.02.013 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ricote M, Huang J, Fajas L et al (1998a) Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 95:7614–7619PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ricote M, Li AC, Willson TM et al (1998b) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82. doi: 10.1038/34178 PubMedCrossRefGoogle Scholar
  145. Ross SE, Erickson RL, Hemati N, MacDougald OA (1999) Glycogen synthase kinase 3 is an insulin-regulated C/EBPalpha kinase. Mol Cell Biol 19:8433–8441PubMedPubMedCentralCrossRefGoogle Scholar
  146. Roth AD, Leisewitz AV, Jung JE et al (2003) PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J Neurosci Res 72:425–435. doi: 10.1002/jnr.10596 PubMedCrossRefGoogle Scholar
  147. Ruzov A, Hackett JA, Prokhortchouk A et al (2009) The interaction of xKaiso with xTcf3: a revised model for integration of epigenetic and Wnt signalling pathways. Dev Camb Engl 136:723–727. doi: 10.1242/dev.025577 Google Scholar
  148. Sabatino L, Pancione M, Votino C et al (2014) Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol 20:7137–7151. doi: 10.3748/wjg.v20.i23.7137 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Saegusa M, Hashimura M, Kuwata T et al (2007) Crosstalk between NF-kappaB/p65 and beta-catenin/TCF4/p300 signalling pathways through alterations in GSK-3beta expression during trans-differentiation of endometrial carcinoma cells. J Pathol 213:35–45. doi: 10.1002/path.2198 PubMedCrossRefGoogle Scholar
  150. Scholz CC, Cavadas MAS, Tambuwala MM et al (2013) Regulation of IL-1β-induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways. Proc Natl Acad Sci USA 110:18490–18495. doi: 10.1073/pnas.1309718110 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Schön S, Flierman I, Ofner A et al (2014) β-catenin regulates NF-κB activity via TNFRSF19 in colorectal cancer cells. Int J Cancer 135:1800–1811. doi: 10.1002/ijc.28839 PubMedCrossRefGoogle Scholar
  152. Schulman IG, Shao G, Heyman RA (1998) Transactivation by retinoid X receptor-peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimers: intermolecular synergy requires only the PPARgamma hormone-dependent activation function. Mol Cell Biol 18:3483–3494PubMedPubMedCentralCrossRefGoogle Scholar
  153. Segel MJ, Izbicki G, Cohen PY et al (2003) Role of interferon-gamma in the evolution of murine bleomycin lung fibrosis. Am J Physiol Lung Cell Mol Physiol 285:L1255–L1262. doi: 10.1152/ajplung.00303.2002 PubMedCrossRefGoogle Scholar
  154. Sharma C, Pradeep A, Wong L et al (2004) Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem 279:35583–35594. doi: 10.1074/jbc.M403143200 PubMedCrossRefGoogle Scholar
  155. Shim CY, Song B-W, Cha M-J et al (2014) Combination of a peroxisome proliferator-activated receptor-gamma agonist and an angiotensin II receptor blocker attenuates myocardial fibrosis and dysfunction in type 2 diabetic rats. J Diabetes Investig 5:362–371. doi: 10.1111/jdi.12153 PubMedCrossRefGoogle Scholar
  156. Shimomura Y, Agalliu D, Vonica A et al (2010) APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464:1043–1047. doi: 10.1038/nature08875 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Shukla DK, Kaiser CC, Stebbins GT, Feinstein DL (2010) Effects of pioglitazone on diffusion tensor imaging indices in multiple sclerosis patients. Neurosci Lett 472:153–156. doi: 10.1016/j.neulet.2010.01.046 PubMedCrossRefGoogle Scholar
  158. Spiegelman VS, Slaga TJ, Pagano M et al (2000) Wnt/beta-catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor. Mol Cell 5:877–882PubMedCrossRefGoogle Scholar
  159. Storer PD, Xu J, Chavis J, Drew PD (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161:113–122. doi: 10.1016/j.jneuroim.2004.12.015 PubMedCrossRefGoogle Scholar
  160. Sun P, Xiong H, Kim TH et al (2006) Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells. Mol Pharmacol 69:520–531. doi: 10.1124/mol.105.019620 PubMedCrossRefGoogle Scholar
  161. Swanson CR, Joers V, Bondarenko V et al (2011) The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflamm 8:91. doi: 10.1186/1742-2094-8-91 CrossRefGoogle Scholar
  162. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Investig 107:7–11. doi: 10.1172/JCI11830 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5:442–447. doi: 10.1038/nrrheum.2009.137 PubMedCrossRefGoogle Scholar
  164. Tang Q-Q, Grønborg M, Huang H et al (2005) Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci USA 102:9766–9771. doi: 10.1073/pnas.0503891102 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Trapp BD, Nave K-A (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313 PubMedCrossRefGoogle Scholar
  166. Tyler WA, Gangoli N, Gokina P et al (2009) Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci Off J Soc Neurosci 29:6367–6378. doi: 10.1523/JNEUROSCI.0234-09.2009 CrossRefGoogle Scholar
  167. Umar S, Sarkar S, Wang Y, Singh P (2009) Functional cross-talk between beta-catenin and NFkappaB signaling pathways in colonic crypts of mice in response to progastrin. J Biol Chem 284:22274–22284. doi: 10.1074/jbc.M109.020941 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Unoda K, Doi Y, Nakajima H et al (2013) Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 256:7–12. doi: 10.1016/j.jneuroim.2012.12.003 PubMedCrossRefGoogle Scholar
  169. Vallée A, Lecarpentier Y (2016) Alzheimer disease: crosstalk between the canonical Wnt/Beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 10:459. doi: 10.3389/fnins.2016.00459 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N (2017a) Thermodynamics in gliomas: interactions between the canonical WNT/beta-catenin pathway and PPAR gamma. Front Physiol 8:352. doi: 10.3389/fphys.2017.00352 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N (2017b) Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin. doi: 10.1093/abbs/gmx073 PubMedGoogle Scholar
  172. Valvezan AJ, Klein PS (2012) GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front Mol Neurosci 5:1. doi: 10.3389/fnmol.2012.00001 PubMedPubMedCentralCrossRefGoogle Scholar
  173. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Dev Camb Engl 136:3205–3214. doi: 10.1242/dev.033910 Google Scholar
  174. Wang X, Adhikari N, Li Q et al (2004) The role of [beta]-transducin repeat-containing protein ([beta]-TrCP) in the regulation of NF-[kappa]B in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:85–90. doi: 10.1161/01.ATV.0000104012.40720.c4 PubMedCrossRefGoogle Scholar
  175. Weng C, Ding M, Fan S et al (2017) Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination. Mol Med Rep 16:1864–1870. doi: 10.3892/mmr.2017.6843 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Westin S, Kurokawa R, Nolte RT et al (1998) Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202. doi: 10.1038/26040 PubMedCrossRefGoogle Scholar
  177. Wood TL, Bercury KK, Cifelli SE et al (2013) mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development. ASN Neuro 5:e00108. doi: 10.1042/AN20120092 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Woodward LJ, Anderson PJ, Austin NC et al (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694. doi: 10.1056/NEJMoa053792 PubMedCrossRefGoogle Scholar
  179. Xiang W, Chao Z-Y, Feng D-Y (2015) Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases. Rev Neurosci 26:407–414. doi: 10.1515/revneuro-2014-0067 PubMedCrossRefGoogle Scholar
  180. Xie C, Li Z, Zhang G-X, Guan Y (2014) Wnt signaling in remyelination in multiple sclerosis: friend or foe? Mol Neurobiol 49:1117–1125. doi: 10.1007/s12035-013-8584-6 PubMedCrossRefGoogle Scholar
  181. Xing B, Xin T, Hunter RL, Bing G (2008) Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflamm 5:4. doi: 10.1186/1742-2094-5-4 CrossRefGoogle Scholar
  182. Xu J, Drew PD (2007) Peroxisome proliferator-activated receptor-gamma agonists suppress the production of IL-12 family cytokines by activated glia. J Immunol 178:1904–1913PubMedPubMedCentralCrossRefGoogle Scholar
  183. Xu C, Wang J, Zhu T et al (2016) Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther 11:247–254PubMedCrossRefGoogle Scholar
  184. Yang XY, Wang LH, Chen T et al (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem 275:4541–4544PubMedCrossRefGoogle Scholar
  185. Yang Y, Lovett-Racke AE, Racke MK (2010) Regulation of immune responses and autoimmune encephalomyelitis by PPARs. PPAR Res 2010:104705. doi: 10.1155/2010/104705 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yao DD, Yang L, Wang Y et al (2015) Geniposide promotes beta-cell regeneration and survival through regulating β-catenin/TCF7L2 pathway. Cell Death Dis 6:e1746. doi: 10.1038/cddis.2015.107 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ye K, Snyder SH (2004) PIKE GTPase: a novel mediator of phosphoinositide signaling. J Cell Sci 117:155–161. doi: 10.1242/jcs.00924 PubMedCrossRefGoogle Scholar
  188. Ye F, Chen Y, Hoang T et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829–838. doi: 10.1038/nn.2333 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yu JSL, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Dev Camb Engl 143:3050–3060. doi: 10.1242/dev.137075 Google Scholar
  190. Yuan S, Shi Y, Tang S-J (2012) Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 7:904–913. doi: 10.1007/s11481-012-9370-3 CrossRefGoogle Scholar
  191. Yue X, Lan F, Yang W et al (2010) Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 1366:27–37. doi: 10.1016/j.brainres.2010.10.032 PubMedCrossRefGoogle Scholar
  192. Yun K, Choi YD, Nam JH et al (2007) NF-kappaB regulates Lef1 gene expression in chondrocytes. Biochem Biophys Res Commun 357:589–595. doi: 10.1016/j.bbrc.2007.03.170 PubMedCrossRefGoogle Scholar
  193. Yun K, So J-S, Jash A, Im S-H (2009) Lymphoid enhancer binding factor 1 regulates transcription through gene looping. J Immunol 183:5129–5137. doi: 10.4049/jimmunol.0802744 PubMedCrossRefGoogle Scholar
  194. Zhang Y, Hu W (2012) NFκB signaling regulates embryonic and adult neurogenesis. Front Biol. doi: 10.1007/s11515-012-1233-z Google Scholar
  195. Zhang Y, Tomann P, Andl T et al (2009) Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 17:49–61. doi: 10.1016/j.devcel.2009.05.011 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zhao W, Sun Z, Wang S et al (2015) Wnt1 participates in inflammation induced by lipopolysaccharide through upregulating scavenger receptor A and NF-kB. Inflammation 38:1700–1706. doi: 10.1007/s10753-015-0147-8 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Zhao C, Deng Y, Liu L et al (2016) Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun 7:10883. doi: 10.1038/ncomms10883 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Experimental and Clinical Neurosciences Laboratory, INSERM U1084University of PoitiersPoitiersFrance
  2. 2.Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348University of PoitiersPoitiersFrance
  3. 3.CHU Amiens Picardie, University of Picardie Jules Verne (UPJV)AmiensFrance
  4. 4.DACTIM, UMR CNRS 7348University of Poitiers et CHU de PoitiersPoitiersFrance
  5. 5.Centre de Recherche CliniqueGrand Hôpital de l’Est Francilien (GHEF)MeauxFrance

Personalised recommendations