Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein

  • Tan Li
  • Yi Liu
  • Linjie Yu
  • Jiamin Lao
  • Meijuan Zhang
  • Jiali Jin
  • Zhengjuan Lu
  • Zhuo Liu
  • Yun Xu
Original Research

Abstract

Spinocerebellar ataxia 3 (SCA3), which is a progressive neurodegenerative disease, is currently incurable. Emerging studies have reported that human umbilical cord mesenchymal stem cells (HUC-MSCs) transplantation could be a promising therapeutic strategy for cerebellar ataxias. However, few studies have evaluated the effects of HUC-MSCs on SCA3 transgenic mouse. Thus, we investigated the effects of HUC-MSCs on SCA3 mice and the underlying mechanisms in this study. SCA3 transgenic mice received systematic administration of 2 × 106 HUC-MSCs once per week for 12 continuous weeks. Motor coordination was measured blindly by open field tests and footprint tests. Immunohistochemistry and Nissl staining were applied to detect neuropathological alternations. Neurotrophic factors in the cerebellum were assessed by ELISA. We used western blotting to detect the alternations of heat shock protein 70 (HSP70), IGF-1, mutant ataxin-3, and apoptosis-associated proteins. Tunel staining was also used to detect apoptosis of affected cells. The distribution and differentiation of HUC-MSCs were determined by immunofluorescence. Our results exhibited that HUC-MSCs transplantation significantly alleviated motor impairments, corresponding to a reduction of cerebellar atrophy, preservation of neurons, decreased expression of mutant ataxin-3, and increased expression of HSP70. Implanted HUC-MSCs were mainly distributed in the cerebellum and pons with no obvious differentiation, and the expressions of IGF-1, VEGF, and NGF in the cerebellum were significantly elevated. Furthermore, with the use of HSP70 analogy quercetin injection, it demonstrated that HSP70 is involved in mutant ataxin-3 reduction. These results showed that HUC-MSCs implantation is a potential treatment for SCA3, likely through upregulating the IGF-1/HSP70 pathway and subsequently inhibiting mutant ataxin-3 toxicity.

Keywords

Ataxia Human umbilical cord mesenchymal stem cells HSP70 Neurotrophins Purkinje cells Spinocerebellar ataxia 3 

Abbreviations

DMEM

Dulbecco’s modified Eagle’s medium

HLA

Human leukocyte antigen

HSP70

Heat protein 70

HUC-MSCs

Human umbilical cord mesenchymal stem cells

IGL

Internal granular layer

ML

Molecular layer

MSCs

Mesenchymal stem cells

PCL

Purkinje cell layer

PFA

Paraformaldehyde

P3

Passage three

SCA3

Spinocerebellar ataxia 3

WT

Wild type

Notes

Acknowledgements

We express our sincere appreciation to the patients who provided umbilical cord in the research. We thank the department of Obstetrics and Gynecology of Drum Tower Hospital of Nanjing University Medical School for material support.

Funding

This work was funded by the National Nature Science Foundation of China (81200876, 81230026, 81300988 and 81501028) and the Science Foundation from Jiangsu Provincial Commission of Health and Family Planning (H201538).

Authors contribution

TL designed experiments, contributed ideas, and revised manuscript. YL, LY, and JL contributed to the experiments performance and the collection/assembly of data. MZ, YX, JJ, and ZL contributed to data analysis, results interpretation, and manuscript editing. ZL conceived the experiments, developed the project, contributed ideas, and wrote the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

The consent is obtained from the all the participants.

Statement of Human Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.” Human tissues were obtained under approval of the Ethical Committee of Health Sciences Faculty of the Nanjing University (China) (Project Number 2013-081-01).

Statement on the Welfare of Animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the National Regulations of Experimental Animal Administration and the Committee of Experimental Animal Administration of Nanjing University.

Supplementary material

10571_2017_513_MOESM1_ESM.tif (22.9 mb)
Supplementary material 1 (TIFF 23491 kb)

References

  1. Abisambra JF et al (2010) Phosphorylation dynamics regulate Hsp27-mediated rescue of neuronal plasticity deficits in tau transgenic mice. J Neurosci 30:15374–15382. doi: 10.1523/JNEUROSCI.3155-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arno AI et al (2014) Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther 5:28. doi: 10.1186/scrt417 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barlow S et al (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 17:1095–1107. doi: 10.1089/scd.2007.0154 CrossRefPubMedGoogle Scholar
  4. Batista-Nascimento L, Neef DW, Liu PC, Rodrigues-Pousada C, Thiele DJ (2011) Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. PLoS ONE 6:e15976. doi: 10.1371/journal.pone.0015976 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bichelmeier U et al (2007) Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: in vivo evidence. J Neurosci 27:7418–7428. doi: 10.1523/JNEUROSCI.4540-06.2007 CrossRefPubMedGoogle Scholar
  6. Cendelin J (2016) Transplantation and stem cell therapy for cerebellar degenerations. Cerebellum 15:48–50. doi: 10.1007/s12311-015-0697-1 CrossRefPubMedGoogle Scholar
  7. Chaudhury S, Welch TR, Blagg BS (2006) Hsp90 as a target for drug development. ChemMedChem 1:1331–1340. doi: 10.1002/cmdc.200600112 CrossRefPubMedGoogle Scholar
  8. Chen X et al (2002a) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69:687–691. doi: 10.1002/jnr.10334 CrossRefPubMedGoogle Scholar
  9. Chen X et al (2002b) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279CrossRefPubMedGoogle Scholar
  10. Cho JY, Kim IS, Jang YH, Kim AR, Lee SR (2006) Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett 404:330–335. doi: 10.1016/j.neulet.2006.06.010 CrossRefPubMedGoogle Scholar
  11. Cho PS et al (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111:430–438. doi: 10.1182/blood-2007-03-078774 CrossRefPubMedGoogle Scholar
  12. Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100CrossRefPubMedGoogle Scholar
  13. Chou AH, Lin AC, Hong KY, Hu SH, Chen YL, Chen JY, Wang HL (2011) p53 activation mediates polyglutamine-expanded ataxin-3 upregulation of Bax expression in cerebellar and pontine nuclei neurons. Neurochem Int 58:145–152. doi: 10.1016/j.neuint.2010.11.005 CrossRefPubMedGoogle Scholar
  14. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154. doi: 10.1038/502 CrossRefPubMedGoogle Scholar
  15. Cummings CJ et al (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518CrossRefPubMedGoogle Scholar
  16. Deuse T et al (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transpl 20:655–667. doi: 10.3727/096368910X536473 CrossRefGoogle Scholar
  17. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242CrossRefPubMedGoogle Scholar
  18. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMedGoogle Scholar
  19. Hao CN, Geng YJ, Li F, Yang T, Su DF, Duan JL, Li Y (2011) Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis. Apoptosis 16:1118–1127. doi: 10.1007/s10495-011-0634-9 CrossRefPubMedGoogle Scholar
  20. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155CrossRefPubMedGoogle Scholar
  21. Hu H et al (2014) Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction. PLoS ONE 9:e95106. doi: 10.1371/journal.pone.0095106 CrossRefPubMedPubMedCentralGoogle Scholar
  22. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345. doi: 10.1634/stemcells.2004-0058 CrossRefGoogle Scholar
  23. in ‘t Anker PS et al (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–852Google Scholar
  24. Ishige I et al (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90:261–269. doi: 10.1007/s12185-009-0377-3 CrossRefPubMedGoogle Scholar
  25. Jin JL et al (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 10:11–20CrossRefPubMedGoogle Scholar
  26. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40:415–423. doi: 10.1016/j.nbd.2010.07.001 CrossRefPubMedGoogle Scholar
  27. Joshi M, Joshi M, Patil P, He Z, Holgersson J, Olausson M, Sumitran-Holgersson S (2012) Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes. Cytotherapy 14:657–669. doi: 10.3109/14653249.2012.663526 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kawabori M, Kuroda S, Ito M, Shichinohe H, Houkin K, Kuge Y, Tamaki N (2013) Timing and cell dose determine therapeutic effects of bone marrow stromal cell transplantation in rat model of cerebral infarct. Neuropathology 33:140–148. doi: 10.1111/j.1440-1789.2012.01335.x CrossRefPubMedGoogle Scholar
  29. Lagasse E et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234. doi: 10.1038/81326 CrossRefPubMedGoogle Scholar
  30. Lai D, Wang F, Dong Z, Zhang Q (2014) Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS ONE 9:e98749. doi: 10.1371/journal.pone.0098749 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li Y et al (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523CrossRefPubMedGoogle Scholar
  32. Li T, Xia M, Gao Y, Chen Y, Xu Y (2015) Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 15:1293–1306. doi: 10.1517/14712598.2015.1051528 CrossRefPubMedGoogle Scholar
  33. Lu LL et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026PubMedGoogle Scholar
  34. Luo W, Sun W, Taldone T, Rodina A, Chiosis G (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24. doi: 10.1186/1750-1326-5-24 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maliutina Ia V, Semina OV, Semenets TN, Budagova KR, Shinkarkina AP, Kabakov AE, Poverennyi AM (2001) The protective effect of thermal treatment before irradiation on CFUs from bone marrow of mice: a potential involvement of heat shock proteins. Radiats Biol Radioecol 41:153–156PubMedGoogle Scholar
  36. Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L (2015) Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain 138:320–335. doi: 10.1093/brain/awu352 CrossRefPubMedGoogle Scholar
  37. Mnich K, Carleton LA, Kavanagh ET, Doyle KM, Samali A, Gorman AM (2014) Nerve growth factor-mediated inhibition of apoptosis post-caspase activation is due to removal of active caspase-3 in a lysosome-dependent manner. Cell Death Dis 5:e1202. doi: 10.1038/cddis.2014.173 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 97:7841–7846. doi: 10.1073/pnas.140202897 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, de Almeida LP (2013) Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS ONE 8:e52396. doi: 10.1371/journal.pone.0052396 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ooboshi H et al (2005) Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111:913–919. doi: 10.1161/01.CIR.0000155622.68580.DC CrossRefPubMedGoogle Scholar
  41. Peng XM, Gao L, Huo SX, Liu XM, Yan M (2015) The mechanism of memory enhancement of Acteoside (Verbascoside) in the senescent mouse model induced by a combination of D-gal and AlCl3. Phytother Res 29:1137–1144. doi: 10.1002/ptr.5358 CrossRefPubMedGoogle Scholar
  42. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902. doi: 10.1634/stemcells.2007-0637 CrossRefPubMedGoogle Scholar
  43. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  44. Ponnaiyan D, Bhat KM, Bhat GS (2012) Comparison of immuno-phenotypes of stem cells from human dental pulp and periodontal ligament. Int J Immunopathol Pharmacol 25:127–134. doi: 10.1177/039463201202500115 CrossRefPubMedGoogle Scholar
  45. Ryu KH et al (2014) Tonsil-derived mesenchymal stem cells alleviate concanavalin A-induced acute liver injury. Exp Cell Res 326:143–154. doi: 10.1016/j.yexcr.2014.06.007 CrossRefPubMedGoogle Scholar
  46. Scherzinger E et al (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96:4604–4609CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shakkottai VG, do Carmo Costa M, Dell’Orco JM, Sankaranarayanan A, Wulff H, Paulson HL (2011) Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 31:13002–13014. doi: 10.1523/JNEUROSCI.2789-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sheng Z, Yao Y, Li Y, Yan F, Huang J, Ma G (2013) Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium. PLoS ONE 8:e81505. doi: 10.1371/journal.pone.0081505 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599. doi: 10.1634/stemcells.2007-0439 CrossRefPubMedGoogle Scholar
  50. Urban MJ, Dobrowsky RT, Blagg BS (2012) Heat shock response and insulin-associated neurodegeneration. Trends Pharmacol Sci 33:129–137. doi: 10.1016/j.tips.2011.11.001 CrossRefPubMedGoogle Scholar
  51. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, Chopp M (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030:19–27. doi: 10.1016/j.brainres.2004.09.061 CrossRefPubMedGoogle Scholar
  52. Zhang J et al (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195:16–26. doi: 10.1016/j.expneurol.2005.03.018 CrossRefPubMedGoogle Scholar
  53. Zhang J et al (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84:587–595. doi: 10.1002/jnr.20962 CrossRefPubMedGoogle Scholar
  54. Zhang MJ et al (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 1402:122–131. doi: 10.1016/j.brainres.2011.05.055 CrossRefPubMedGoogle Scholar
  55. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi: 10.1089/107632701300062859 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of NeurologyAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing CityPeople’s Republic of China
  2. 2.Department of NeurologyDrum Tower Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations