Cellular and Molecular Neurobiology

, Volume 37, Issue 4, pp 753–762 | Cite as

Atorvastatin Attenuates Ischemia/Reperfusion-Induced Hippocampal Neurons Injury Via Akt-nNOS-JNK Signaling Pathway

  • Sen Shao
  • Mingwei Xu
  • Jiajun Zhou
  • Xiaoling Ge
  • Guanfeng Chen
  • Lili Guo
  • Lian Luo
  • Kun Li
  • Zhou Zhu
  • Fayong Zhang
Original Research


Ischemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown. Therefore, the aims of this study were to investigate the neuroprotective mechanisms of ATV against ischemic brain injury induced by cerebral ischemia reperfusion. In this study, four-vessel occlusion model was established in rats with cerebral ischemia. Rats were divided into five groups: sham group, I/R group, I/R+ATV group, I/R+ATV+LY, and I/R+SP600125 group. Cresyl violet staining was carried out to examine the neuronal death of hippocampal CA1 region. Immunoblotting was used to detect the expression of the related proteins. Results showed that ATV significantly protected hippocampal CA1 pyramidal neurons against cerebral I/R. ATV could increase the phosphorylation of protein kinase B (Akt1) and nNOS, diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3. Whereas, all of the aforementioned effects of ATV were reversed by LY294002 (an inhibitor of Akt1). Furthermore, pretreatment with SP600125 (an inhibitor of JNK) diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3 after cerebral I/R. Taken together, our results implied that Akt-mediated phosphorylation of nNOS is involved in the neuroprotection of ATV against ischemic brain injury via suppressing JNK3 signaling pathway that provide a new experimental foundation for stroke therapy.


Cerebral ischemia Akt1 nNOS JNK3 LY294002 



This work was supported by Jiangsu Province Key Laboratory of Brain Disease Bioinformation (JSBL1505), Jiangsu Province Key Laboratory of Anesthesiology (KJS1502), and the National Natural Science Foundation of China (81271296).

Author Contributions

S.S. designed the study. M.X., J.Z., X.G., G.C., L.G., L.L., and K.L. performed the experiments and collected the data. S.S. and Z.Z. analyzed and interpreted the experimental data. S.S., M.X., and J.Z. prepared the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing financial interests.


  1. Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, Zivin JA, SPARCL (2006) High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 355(6):549–559. doi: 10.1056/NEJMoa061894 CrossRefPubMedGoogle Scholar
  2. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351(6329):714–718. doi: 10.1038/351714a0 CrossRefPubMedGoogle Scholar
  3. Carty ML, Wixey JA, Reinebrant HE, Gobe G, Colditz PB, Buller KM (2011) Ibuprofen inhibits neuroinflammation and attenuates white matter damage following hypoxia-ischemia in the immature rodent brain. Brain Res 1402:9–19. doi: 10.1016/j.brainres.2011.06.001 CrossRefPubMedGoogle Scholar
  4. Ciftci O, Oztanir MN, Cetin A (2014) Neuroprotective effects of beta-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/J6 mouse. Neurochem Res 39(9):1717–1723. doi: 10.1007/s11064-014-1365-4 CrossRefPubMedGoogle Scholar
  5. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241CrossRefPubMedGoogle Scholar
  6. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10(2):262–267CrossRefPubMedGoogle Scholar
  7. Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, Watanabe Y (1999) Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 274(29):20597–20602CrossRefPubMedGoogle Scholar
  8. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291(5):H2210–H2215. doi: 10.1152/ajpheart.01270.2005 CrossRefPubMedGoogle Scholar
  9. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265(5180):1883–1885CrossRefPubMedGoogle Scholar
  10. Junyent F, de Lemos L, Verdaguer E, Folch J, Ferrer I, Ortuno-Sahagun D, Beas-Zarate C, Romero R, Pallas M, Auladell C, Camins A (2011) Gene expression profile in JNK3 null mice: a novel specific activation of the PI3K/AKT pathway. J Neurochem 117(2):244–252. doi: 10.1111/j.1471-4159.2011.07195.x CrossRefPubMedGoogle Scholar
  11. Kim DH, Kim S, Jung WY, Park SJ, Park DH, Kim JM, Cheong JH, Ryu JH (2009) The neuroprotective effects of the seeds of Cassia obtusifolia on transient cerebral global ischemia in mice. Food Chem Toxicol 47(7):1473–1479. doi: 10.1016/j.fct.2009.03.028 CrossRefPubMedGoogle Scholar
  12. Kong D, Zhu J, Liu Q, Jiang Y, Xu L, Luo N, Zhao Z, Zhai Q, Zhang H, Zhu M, Liu X (2016) Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy. Cell Mol Neurobiol. doi: 10.1007/s10571-016-0370-3 PubMedGoogle Scholar
  13. Lalkovicova M, Bonova P, Burda J, Danielisova V (2015) Effect of bradykinin postconditioning on ischemic and toxic brain damage. Neurochem Res 40(8):1728–1738. doi: 10.1007/s11064-015-1675-1 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lehotsky J, Petras M, Kovalska M, Tothova B, Drgova A, Kaplan P (2015) Mechanisms involved in the ischemic tolerance in brain: effect of the homocysteine. Cell Mol Neurobiol 35(1):7–15. doi: 10.1007/s10571-014-0112-3 CrossRefPubMedGoogle Scholar
  15. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364(6438):626–632. doi: 10.1038/364626a0 CrossRefPubMedGoogle Scholar
  16. Liu G, Zhao J, Chang Z, Guo G (2013) CaMKII activates ASK1 to induce apoptosis of spinal astrocytes under oxygen-glucose deprivation. Cell Mol Neurobiol 33(4):543–549. doi: 10.1007/s10571-013-9920-0 CrossRefPubMedGoogle Scholar
  17. Majewski N, Nogueira V, Robey RB, Hay N (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24(2):730–740CrossRefPubMedPubMedCentralGoogle Scholar
  18. Marz-Weiss P, Kunz D, Bimmler D, Berkemeier C, Ozbek S, Dimitriades-Schmutz B, Haybaeck J, Otten U, Graf R (2011) Expression of pancreatitis-associated protein after traumatic brain injury: a mechanism potentially contributing to neuroprotection in human brain. Cell Mol Neurobiol 31(8):1141–1149. doi: 10.1007/s10571-011-9715-0 CrossRefPubMedGoogle Scholar
  19. Meloni BP, Craig AJ, Milech N, Hopkins RM, Watt PM, Knuckey NW (2014) The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cell Mol Neurobiol 34(2):173–181. doi: 10.1007/s10571-013-9999-3 CrossRefPubMedGoogle Scholar
  20. Menard J, Treit D (1998) The septum and the hippocampus differentially mediate anxiolytic effects of R(+)-8-OH-DPAT. Behav Pharmacol 9(2):93–101PubMedGoogle Scholar
  21. Meng X, Tan J, Li M, Song S, Miao Y, Zhang Q (2016) Sirt1: role under the condition of ischemia/hypoxia. Cell Mol Neurobiol. doi: 10.1007/s10571-016-0355-2 Google Scholar
  22. Moran J, Perez-Basterrechea M, Garrido P, Diaz E, Alonso A, Otero J, Colado E, Gonzalez C (2016) Effects of estrogen and phytoestrogen treatment on an in vitro model of recurrent stroke on HT22 neuronal cell line. Cell Mol Neurobiol. doi: 10.1007/s10571-016-0372-1 PubMedGoogle Scholar
  23. Pan J, Zhang QG, Zhang GY (2005) The neuroprotective effects of K252a through inhibiting MLK3/MKK7/JNK3 signaling pathway on ischemic brain injury in rat hippocampal CA1 region. Neuroscience 131(1):147–159. doi: 10.1016/j.neuroscience.2004.09.031 CrossRefPubMedGoogle Scholar
  24. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P (2015) Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol 35(1):23–31. doi: 10.1007/s10571-014-0104-3 CrossRefPubMedGoogle Scholar
  25. Qi D, Liu H, Niu J, Fan X, Wen X, Du Y, Mou J, Pei D, Liu Z, Zong Z, Wei X, Song Y (2012) Heat shock protein 72 inhibits c-Jun N-terminal kinase 3 signaling pathway via Akt1 during cerebral ischemia. J Neurol Sci 317(1–2):123–129. doi: 10.1016/j.jns.2012.02.011 CrossRefPubMedGoogle Scholar
  26. Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song Y, Yu H, Tang J, Fu W, Sheng L, Yang L, Wang M, Zhang W, Miao L, Li T, Huang X, Dong H (2014) HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke. Brain Res 1577:69–76. doi: 10.1016/j.brainres.2014.06.031 CrossRefPubMedGoogle Scholar
  27. Qu YY, Yuan MY, Liu Y, Xiao XJ, Zhu YL (2015) The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/reperfusion injury is associated with PI3K/Akt pathway and ATP-sensitive potassium channels. Neurochem Res 40(1):1–14. doi: 10.1007/s11064-014-1456-2 CrossRefPubMedGoogle Scholar
  28. Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, Getzoff ED, Ziff EB (2007) Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 27(13):3445–3455. doi: 10.1523/JNEUROSCI.4799-06.2007 CrossRefPubMedGoogle Scholar
  29. Sharifi AM, Mousavi SH, Jorjani M (2010) Effect of chronic lead exposure on pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression in rat hippocampus in vivo. Cell Mol Neurobiol 30(5):769–774. doi: 10.1007/s10571-010-9504-1 CrossRefPubMedGoogle Scholar
  30. Song T, Liu J, Tao X, Deng JG (2014) Protection effect of atorvastatin in cerebral ischemia-reperfusion injury rats by blocking the mitochondrial permeability transition pore. Genet Mol Res 13(4):10632–10642. doi: 10.4238/2014.December.18.5 CrossRefPubMedGoogle Scholar
  31. Tu Q, Cao H, Zhong W, Ding B, Tang X (2014) Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects. Neural Regen Res 9(3):268–275. doi: 10.4103/1673-5374.128220 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Viggiano E, Viggiano D, Viggiano A, De Luca B, Monda M (2014) Cortical spreading depression increases the phosphorylation of AMP-activated protein kinase in the cerebral cortex. Neurochem Res 39(12):2431–2439. doi: 10.1007/s11064-014-1447-3 CrossRefPubMedGoogle Scholar
  33. Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GY (2007) Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal 19(9):1844–1856. doi: 10.1016/j.cellsig.2007.04.005 CrossRefPubMedGoogle Scholar
  34. Watanabe Y, Song T, Sugimoto K, Horii M, Araki N, Tokumitsu H, Tezuka T, Yamamoto T, Tokuda M (2003) Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 372(Pt 2):465–471. doi: 10.1042/BJ20030380 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Xu J, Liu ZA, Pei DS, Xu TJ (2010) Calcium/calmodulin-dependent kinase II facilitated GluR6 subunit serine phosphorylation through GluR6-PSD95-CaMKII signaling module assembly in cerebral ischemia injury. Brain Res 1366:197–203. doi: 10.1016/j.brainres.2010.09.087 CrossRefPubMedGoogle Scholar
  36. Yan XB, Meng FJ, Song B, Zhang GY (2004) Brain ischemia induces serine phosphorylation of neuronal nitric oxide synthase by Ca(2+)/calmodulin-dependent protein kinase II in rat hippocampus. Acta Pharmacol Sin 25(5):617–622PubMedGoogle Scholar
  37. Zhang ZB, Li ZG (2012) Cathepsin B and phospo-JNK in relation to ongoing apoptosis after transient focal cerebral ischemia in the rat. Neurochem Res 37(5):948–957. doi: 10.1007/s11064-011-0687-8 CrossRefPubMedGoogle Scholar
  38. Zhang LL, Zhang HT, Cai YQ, Han YJ, Yao F, Yuan ZH, Wu BY (2016) Anti-inflammatory effect of mesenchymal stromal cell transplantation and quercetin treatment in a rat model of experimental cerebral ischemia. Cell Mol Neurobiol. doi: 10.1007/s10571-015-0291-6 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sen Shao
    • 1
    • 3
    • 4
  • Mingwei Xu
    • 2
  • Jiajun Zhou
    • 1
  • Xiaoling Ge
    • 1
  • Guanfeng Chen
    • 1
  • Lili Guo
    • 1
  • Lian Luo
    • 1
  • Kun Li
    • 1
  • Zhou Zhu
    • 1
  • Fayong Zhang
    • 5
  1. 1.The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese MedicineHangzhouPeople’s Republic of China
  2. 2.The First Affiliated Hospital of Zhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouPeople’s Republic of China
  4. 4.Jiangsu Key Laboratory of Brain Disease BioinformationXuzhou Medical UniversityXuzhouPeople’s Republic of China
  5. 5.Department of NeurosurgeryHuashan Hospital Affiliated to Fudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations