Advertisement

Cellular and Molecular Neurobiology

, Volume 37, Issue 2, pp 339–349 | Cite as

The Anticonvulsant and Neuroprotective Effects of Oxysophocarpine on Pilocarpine-Induced Convulsions in Adult Male Mice

  • Gang Liu
  • Jing Wang
  • Xian-Hua Deng
  • Peng-Sheng Ma
  • Feng-Mei Li
  • Xiao-Dong Peng
  • Yang Niu
  • Tao Sun
  • Yu-Xiang Li
  • Jian-Qiang Yu
Original Research

Abstract

Epilepsy is one of the prevalent and major neurological disorders, and approximately one-third of the individuals with epilepsy experience seizures that do not respond well to available medications. We investigated whether oxysophocarpine (OSC) had anticonvulsant and neuroprotective property in the pilocarpine (PILO)-treated mice. Thirty minutes prior to the PILO injection, the mice were administrated with OSC (20, 40, and 80 mg/kg) once. Seizures and electroencephalography (EEG) were observed, and then the mice were killed for Nissl and Fluoro-jade B (FJB) staining. The oxidative stress was measured at 24 h after convulsion. Western blot analysis was used to examine the expressions of the Bax, Bcl-2, and Caspase-3. In this study, we found that pretreatment with OSC (40, 80 mg/kg) significantly delayed the onset of the first convulsion and status epilepticus (SE) and reduced the incidence of SE and mortality. Analysis of EEG recordings revealed that OSC (40, 80 mg/kg) significantly reduced epileptiform discharges. Furthermore, Nissl and FJB staining showed that OSC (40, 80 mg/kg) attenuated the neuronal cell loss and degeneration in hippocampus. In addition, OSC (40, 80 mg/kg) attenuated the changes in the levels of Malondialdehyde (MDA) and strengthened glutathione peroxidase and catalase activity in the hippocampus. Western blot analysis showed that OSC (40, 80 mg/kg) significantly decreased the expressions of Bax, Caspase-3 and increased the expression of Bcl-2. Collectively, the findings of this study indicated that OSC exerted anticonvulsant and neuroprotective effects on PILO-treated mice. The beneficial effects should encourage further studies to investigate OSC as an adjuvant in epilepsy, both to prevent seizures and to protect neurons in brain.

Keywords

Pilocarpine Convulsion Oxysophocarpine Anticonvulsant Neuroprotection Neuronal damage 

Notes

Acknowledgments

This study was supported by the Ningxia Hui Autonomous Region Science and Technology Support Program (2015BAK45B01) and the Ningxia medical university scientific research project (XY201409 and XY201514).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. Cavalheiro E, Silva D, Turski W, Calderazzo-Filho L, Bortolotto Z, Turski L (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev Brain Res 37:43–58CrossRefGoogle Scholar
  2. Covolan L, Mello L (2000) Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 39:133–152CrossRefPubMedGoogle Scholar
  3. Dal-Pizzol F, Klamt F, Vianna M, Schröder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182CrossRefPubMedGoogle Scholar
  4. DeGiorgio C, Han C, Xu C (1992) Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia 33:23–27CrossRefPubMedGoogle Scholar
  5. Delorenzo R, Sun D, Deshpande L (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 105:229–266CrossRefPubMedGoogle Scholar
  6. Folbergrova J (2013) Oxidative stress in immature brain following experimentally-induced seizures. Physiol Res 62:S39–S48PubMedGoogle Scholar
  7. Freitas R, Sousa F, Vasconcelos S, Viana G, Fonteles M (2004) Pilocarpine-induced status epilepticus in rats: lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex. Pharmacol Biochem Behav 78:327–332CrossRefPubMedGoogle Scholar
  8. Freitas R, Vasconcelos S, Souza F, Viana G, Fonteles M (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307CrossRefPubMedGoogle Scholar
  9. Fujikawa DG (2005) Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav 7:S3–S11CrossRefPubMedGoogle Scholar
  10. Galleano M, Puntarulo S (1995) Role of antioxidants on the erythrocytes resistance to lipid peroxidation after acute iron overload in rats. Biochim Biophys Acta 1271:321–326CrossRefPubMedGoogle Scholar
  11. Hui L, Pei D, Zhang Q, Guan Q, Zhang G (2005) The neuroprotection of insulin on ischemicn brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/Akt activation. Brain Res 1052:1–9CrossRefPubMedGoogle Scholar
  12. Kamida T, Fujiki M, Ooba H, Anan M, Abe T, Kobayashi H (2009) Neuroprotective effects of edaravone, a free radical scavenger, on the rat hippocampus after pilocarpine-induced status epilepticus. Seizure 18:71–75CrossRefPubMedGoogle Scholar
  13. Katchanov J, Birbeck GL (2012) Epilepsy care guidelines for low- and middle- income countries: from WHO mental health GAP to national programs. BMC Med 10:107CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim D, Cho K, Moon S, Kim Y, Kim D, Choi J, Chung H (2005) Cytoprotective mechanism of baicalin against endothelial cell damage by peroxynitrite. J Pharm Pharmacol 57:1581–1590CrossRefPubMedGoogle Scholar
  15. Liang L, Patel M (2006) Seizure-induced changes in mitochondrial redox status. Free Radic Biol Med 40:316–322CrossRefPubMedGoogle Scholar
  16. Liu C, Wu H, Kao S, Wei Y (1997) Phenytoin-mediated oxidative stress in serum of female epileptics: a possible pathogenesis in the fetal hydantoin syndrome. Hum Exp Toxicol 16:177–181CrossRefPubMedGoogle Scholar
  17. Liu Y, Gao F, Li X (2012) The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem Res 37:1670–1680CrossRefPubMedGoogle Scholar
  18. Manuela M, Gaurav K, Chiara R, Rafal MK (2012) Rapid epileptogenesis in the mouse pilocarpine model: video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238:156–167CrossRefGoogle Scholar
  19. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Beto G (2009) Pilocarpine-induced seizures revisited: what does the model mimic? Epilepsy Curr 9:146–148CrossRefGoogle Scholar
  20. Mikati M, Abi-Habib R, El Sabban M, Dbaibo G, Kurdi R, Kobeissi M, Farhat F, Asaad W (2003) Hippocampal programmed cell death after status epilepticus: evidence for NMDA-receptor and ceramide-mediated mechanisms. Epilepsia 44:282–291CrossRefPubMedGoogle Scholar
  21. Pazdernik T, Emerson M, Cross R, Nelson S, Samson F (2001) Soman-induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 21:S87–S94CrossRefPubMedGoogle Scholar
  22. Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T, Tan Q, Hai C (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res 40:661–673CrossRefPubMedGoogle Scholar
  23. Perucca E, French J, Bialer M (2007) Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 6:793–804CrossRefPubMedGoogle Scholar
  24. Racine R (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRefPubMedGoogle Scholar
  25. Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131CrossRefPubMedPubMedCentralGoogle Scholar
  26. Santos L, Freitas R, Xavier S, Saldanha G, Freitas R (2008) Neuroprotective actions of vitamin C related to decreased lipid peroxidation and increased catalase activity in adult rats after pilocarpine-induced seizures. Pharmacol Biochem Behav 89:1–5CrossRefPubMedGoogle Scholar
  27. Schmitz B (2006) Effects of antiepileptic drugs on mood and behavior. Epilepsia 47:28–33CrossRefPubMedGoogle Scholar
  28. Shieh D, Liu LT, Lin CC (2000) Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20:2861–2865PubMedGoogle Scholar
  29. Shin E, Jeong J, Chung Y (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59:122–137CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sudha K, Rao A, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303:19–24CrossRefPubMedGoogle Scholar
  31. Ullah I, Badshah H, Naseer MI, Lee HY, Kim MO (2015) Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromol Med 17:35–46CrossRefGoogle Scholar
  32. Voutsinos-Porche B, Koning E, Kaplan H, Ferrandon A, Guenounou M, Nehlig A, Motte J (2004) Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy. Neurobiol Dis 17:385–402CrossRefPubMedGoogle Scholar
  33. Wang S, Chen F, Yao C (2000) The pharmacokinetic studies of alkaloids in bitter beans Chinese trad herbal. Drugs 31:1–2Google Scholar
  34. Weise J, Engelhorn T, Dorfler A, Aker S, Bahr M, Hufnagel A (2005) Expression time course and spatial distribution of activated caspases-3 after experimental status epilepticus: contribution of delayed neuronal cell death to seizureinduced neuronal injury. Neurobiol Dis 18:582–590CrossRefPubMedGoogle Scholar
  35. Xie N, Wang C, Lian Y, Wu C, Zhang H, Zhang Q (2014) Puerarin protects hippocampal neurons against cell death in pilocarpine-induced seizures through antioxidant and anti-apoptotic mechanisms. Cell Mol Neurobiol 34:1175–1182. doi: 10.1007/s10571-014-0093-2 CrossRefPubMedGoogle Scholar
  36. Xu T, Li Y, Wang H, Xu Y, Ma L, Sun T, Ma H, Yu J (2013) Oxysophocarpine induces anti-nociception and increases the expression of GABAAα1 receptors in mice. Mol Med Rep 7(6):1819–1825PubMedGoogle Scholar
  37. Yang Q, Zhang H, Han C (2006) Separation technology and toxicity of oxysophocarpine. J Northwest For Univ 21:111–112Google Scholar
  38. Yang Y, Li Y-X, Wang H-L, Jin S-J, Zhou R, Qiao H-Q, Du J, Wu J, Zhao C-J, Niu Y, Sun T, Yu J-Q (2015) Oxysophocarpine ameliorates carrageenan-induced inflammatory pain via inhibiting expressions of prostaglandin E2 and cytokines in mice. Planta Med 81:791–797CrossRefPubMedGoogle Scholar
  39. Zeng LH, Xu L, Rensing NR, Sinatra PM, Rothman SM, Wong M (2007) Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci 27:11604–11613CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhao C, Li Z (2009) Modern pharmacological research of matrine alkaloid. Res Appl Vet Drugs 28:50–52Google Scholar
  41. Zhao P, Zhou R, Zhu X, Hao Y, Li N (2015) Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int J Mol Med 36:633–644PubMedPubMedCentralGoogle Scholar
  42. Zheng H, Tang R, Yao Y, Ji Z, Cao Y, Liu Z, Peng F, Wang W, Can D, Xing H, Bu G, Xu H, Zhang YW, Zheng W (2016) MiR-219 protects against seizure in the kainic acid model of epilepsy. Mol Neurobiol 53:1–7CrossRefPubMedGoogle Scholar
  43. Zhu Q, Li Y, Zhou R, Ma N, Chang R, Wang T, Zhang Y, Chen X, Hao Y, Jin S, Ma L, Du J, Sun T, Yu J (2014) Neuroprotective effects of oxysophocarpine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. Pharm Biol Early Online:1–8Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gang Liu
    • 1
  • Jing Wang
    • 1
  • Xian-Hua Deng
    • 1
  • Peng-Sheng Ma
    • 1
  • Feng-Mei Li
    • 1
  • Xiao-Dong Peng
    • 1
  • Yang Niu
    • 2
  • Tao Sun
    • 3
  • Yu-Xiang Li
    • 4
  • Jian-Qiang Yu
    • 1
    • 5
  1. 1.Department of PharmacologyNingxia Medical UniversityYinchuanChina
  2. 2.Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of EducationNingxia Medical UniversityYinchuanChina
  3. 3.Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
  4. 4.College of NursingNingxia Medical UniversityYinchuanChina
  5. 5.Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation CenterNingxia Medical UniversityYinchuanChina

Personalised recommendations