Advertisement

Cellular and Molecular Neurobiology

, Volume 37, Issue 4, pp 729–742 | Cite as

Grueneberg Glomeruli in the Olfactory Bulb are Activated by Odorants and Cool Temperature

  • Rosolino Bumbalo
  • Marilena Lieber
  • Lisa Schroeder
  • Yasemin Polat
  • Heinz Breer
  • Joerg Fleischer
Original Research

Abstract

Neurons of the Grueneberg ganglion respond to cool temperatures as well as to distinct odorants and extend axonal processes to the olfactory bulb of the brain. Analyses of transgenic mice, in which Grueneberg ganglion neurons and their axons are labeled, revealed that these axons innervated nine distinct glomeruli distributed in a characteristic topographical pattern in dorsal, lateral, ventral, and medial regions of rather posterior areas in the bulb. To assess activation of these glomeruli (hereinafter designated as Grueneberg glomeruli) upon stimulation of Grueneberg ganglion neurons, mice were exposed to the odorant 2,3-dimethylpyrazine (2,3-DMP) and the expression of the activity-dependent marker c-Fos in juxtaglomerular cells of the relevant glomeruli was monitored. It was found that all of these glomeruli were activated, irrespective of their localization in the bulb. To verify that the activation of juxtaglomerular cells in Grueneberg glomeruli was indeed based on stimulation of Grueneberg ganglion neurons, the 2,3-DMP-induced responses in these glomeruli were investigated in mice lacking the cyclic nucleotide-gated channel CNGA3 which is critical for chemo- and thermosensory signal transduction in Grueneberg ganglion neurons. This approach revealed that elimination of CNGA3 led to a reduction of the odorant-induced activity in Grueneberg glomeruli, indicating that the activation of these glomeruli is based on a preceding stimulation of the Grueneberg ganglion. Analyzing whether Grueneberg glomeruli in the bulb might also process thermosensory information, it was found that upon exposure to coolness, Grueneberg glomeruli were activated. Investigating mice lacking CNGA3, the activation of these glomeruli by cool temperatures was attenuated.

Keywords

2,3-Dimethylpyrazine Chemosensation Grueneberg ganglion Necklace glomeruli Olfactory bulb Thermosensation 

Abbreviations

2,3-DMP

2,3-Dimethylpyrazine

cGMP

Cyclic guanosine monophosphate

DAPI

4′,6-Diamidino-2-phenylindole

GC-G/GFP

Transgenic mouse line in which expression of the green fluorescent protein is driven by the guanylyl cyclase G gene

GC-G

Guanylyl cyclase G

GFP

Green fluorescent protein

Notes

Acknowledgments

The authors would like to thank Elisa Mühlberger for excellent technical assistance and Tara Sukic for her initial contribution to the study. The authors are indebted to Ivan Rodriguez for kindly providing the GC-G/GFP transgenic mouse line and to Martin Biel for providing CNGA3-deficient mice. This work was supported by the Deutsche Forschungsgemeinschaft (Br712/24-1 to Heinz Breer and Joerg Fleischer). Joerg Fleischer was supported by the Humboldt reloaded program of the University of Hohenheim financed by the Bundesministerium für Bildung und Forschung (01PL11003).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10571_2016_408_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1602 kb)

References

  1. Bautze V, Bär R, Fissler B, Trapp M, Schmidt D, Beifuss U, Bufe B, Zufall F, Breer H, Strotmann J (2012) Mammalian-specific OR37 receptors are differentially activated by distinct odorous fatty aldehydes. Chem Senses 37:479–493CrossRefPubMedGoogle Scholar
  2. Bautze V, Schwack W, Breer H, Strotmann J (2014) Identification of a natural source for the OR37B ligand. Chem Senses 39:27–38CrossRefPubMedGoogle Scholar
  3. Brechbühl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095CrossRefPubMedGoogle Scholar
  4. Brechbühl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F, Giroud C, Broillet MC (2013a) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci USA 110:4762–4767CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brechbühl J, Moine F, Broillet MC (2013b) Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons. Front. Behav Neurosci 7:193Google Scholar
  6. Brechbühl J, Klaey M, Moine F, Bovay E, Hurni N, Nenniger-Tosato M, Broillet MC (2014) Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion. Front Neuroanat 8:87PubMedPubMedCentralGoogle Scholar
  7. Buck LB (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618CrossRefPubMedGoogle Scholar
  8. Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34:294–306CrossRefPubMedGoogle Scholar
  9. Clarin T, Sandhu S, Apfelbach R (2010) Odor detection and odor discrimination in subadult and adult rats for two enantiomeric odorants supported by c-fos data. Behav Brain Res 206:229–235CrossRefPubMedGoogle Scholar
  10. Fleischer J (2014) The Grueneberg ganglion: a cool chemodetector. Chemosense 15:3–19Google Scholar
  11. Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H (2006) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125:337–349CrossRefPubMedGoogle Scholar
  12. Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32:623–631CrossRefPubMedGoogle Scholar
  13. Fleischer J, Mamasuew K, Breer H (2009) Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 131:75–88CrossRefPubMedGoogle Scholar
  14. Fleischer J, Bumbalo R, Bautze V, Strotmann J, Breer H (2015) Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 361:697–710CrossRefPubMedGoogle Scholar
  15. Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 22:2649–2654CrossRefPubMedGoogle Scholar
  16. Grüneberg H (1973) A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 140:39–52CrossRefPubMedGoogle Scholar
  17. Guthrie KM, Anderson AJ, Leon M, Gall C (1993) Odor-induced increases in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb. Proc Natl Acad Sci USA 90:3329–3333CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hanke W, Mamasuew K, Biel M, Yang RB, Fleischer J (2013) Odorant-evoked electrical responses in Grueneberg ganglion neurons rely on cGMP-associated signaling proteins. Neurosci Lett 539:38–42CrossRefPubMedGoogle Scholar
  19. Juilfs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-d define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 94:3388–3395CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kludt E, Okom C, Brinkmann A, Schild D (2015) Integrating temperature with odor processing in the olfactory bulb. J Neurosci 35:7892–7902CrossRefPubMedGoogle Scholar
  21. Koos DS, Fraser SE (2005) The Grueneberg ganglion projects to the olfactory bulb. NeuroReport 16:1929–1932CrossRefPubMedGoogle Scholar
  22. Lin W, Arellano J, Slotnick B, Restrepo D (2004) Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci 24:3703–3710CrossRefPubMedGoogle Scholar
  23. Liu CY, Fraser SE, Koos DS (2009) Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 516:36–48CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mamasuew K, Breer H, Fleischer J (2008) Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci 28:1775–1785CrossRefPubMedGoogle Scholar
  25. Mamasuew K, Michalakis S, Breer H, Biel M, Fleischer J (2010) The cyclic nucleotide-gated ion channel CNGA3 contributes to coolness-induced responses of Grueneberg ganglion neurons. Cell Mol Life Sci 67:1859–1869CrossRefPubMedGoogle Scholar
  26. Mamasuew K, Hofmann N, Breer H, Fleischer J (2011a) Grueneberg ganglion neurons are activated by a defined set of odorants. Chem Senses 36:271–282CrossRefPubMedGoogle Scholar
  27. Mamasuew K, Hofmann N, Kretzschmann V, Biel M, Yang RB, Breer H, Fleischer J (2011b) Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on cyclic guanosine monophosphate signaling elements. Neurosignals 19:198–209CrossRefPubMedGoogle Scholar
  28. Matsuo T, Rossier DA, Kan C, Rodriguez I (2012) The wiring of Grueneberg ganglion axons is dependent on neuropilin 1. Development 139:2783–2791CrossRefPubMedGoogle Scholar
  29. Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci USA 97:10595–10600CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oliva AM, Jones KR, Restrepo D (2008) Sensory-dependent asymmetry for a urine-responsive olfactory bulb glomerulus. J Comp Neurol 510:475–483CrossRefPubMedPubMedCentralGoogle Scholar
  31. Roppolo D, Ribaud V, Jungo VP, Luscher C, Rodriguez I (2006) Projection of the Gruneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 23:2887–2894CrossRefPubMedGoogle Scholar
  32. Salcedo E, Zhang C, Kronberg E, Restrepo D (2005) Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb. Chem Senses 30:615–626CrossRefPubMedGoogle Scholar
  33. Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F (2010) Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci 30:7563–7568CrossRefPubMedGoogle Scholar
  34. Shinoda K, Shiotani Y, Osawa Y (1989) “Necklace olfactory glomeruli” form unique components of the rat primary olfactory system. J Comp Neurol 284:362–373CrossRefPubMedGoogle Scholar
  35. Spors H, Albeanu DF, Murthy VN, Rinberg D, Uchida N, Wachowiak M, Friedrich RW (2012) Illuminating vertebrate olfactory processing. J Neurosci 32:14102–14108CrossRefPubMedPubMedCentralGoogle Scholar
  36. Stebe S, Schellig K, Lesage F, Breer H, Fleischer J (2014) The thermosensitive potassium channel TREK-1 contributes to coolness-evoked responses of Grueneberg ganglion neurons. Cell Mol Neurobiol 34:113–122CrossRefPubMedGoogle Scholar
  37. Storan MJ, Key B (2006) Septal organ of Gruneberg is part of the olfactory system. J Comp Neurol 494:834–844CrossRefPubMedGoogle Scholar
  38. Tachibana T, Fujiwara N, Nawa T (1990) The ultrastructure of the ganglionated nerve plexus in the nasal vestibular mucosa of the musk shrew (Suncus murinus, insectivora). Arch Histol Cytol 53:147–156CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity of HohenheimStuttgartGermany
  2. 2.Department of Animal Physiology, Institute of Biology/ZoologyMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations